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ABSTRACT 

Metabolic diseases, such as obesity and type 2 diabetes (T2D), are characterized by 

aberrant nutrient metabolism, such as disrupted metabolism of vitamin D and methyl 

groups. Whole eggs are a source of several nutrients, including vitamin D, B vitamins and 

choline, which may assist in the maintenance of micronutrient balance. Additionally, the 

high-quality protein content of whole eggs may contribute to satiety and body weight 

management. However, the relation between egg consumption and measures such as 

insulin sensitivity, glycemic control and cardiovascular risk factors in individuals with 

obesity, T2D and other metabolic abnormalities remains inconsistent. The objectives of the 

studies described in this dissertation were to evaluate the impact of whole egg consumption 

on 1) vitamin D homeostasis and body weight gain in T2D rats, 2) metabolic biomarkers 

of insulin resistance in T2D rats and 3) homocysteine metabolism in a rat model of 

hyperhomocysteinemia.  

The first study described in this dissertation compared dietary whole egg to 

supplemental cholecalciferol with respect to vitamin D balance, weight gain, and body 

composition in T2D rats. Male Zucker diabetic fatty (ZDF) rats (n = 24) and their lean 

controls (n = 24) were randomly assigned to one of 3 dietary treatment groups: a casein-

based diet (CAS), a dried whole egg-based diet (WE), or a casein-based diet containing 

supplemental cholecalciferol (CAS+D) at the same level of cholecalciferol provided by the 

dried whole egg-based diet (37.6 µg/kg diet). All diets provided protein at 20% (w/w) and 

were matched for lipid quantity to account for the additional lipid contributed by the whole 

egg. Rats were fed their respective diets for 8 weeks. Weight gain and percent body fat 

were reduced by approximately 20% and 11%, respectively, in ZDF rats fed WE compared 
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to ZDF rats fed CAS or CAS+D. ZDF rats fed CAS had 21% lower serum 25-

hydroxyvitamin D [25(OH)D] concentrations than lean rats fed CAS. In ZDF rats, WE 

consumption increased serum 25(OH)D concentrations 130% compared to CAS, whereas 

consumption of CAS+D increased serum 25(OH)D concentrations by 35% compared to 

CAS. Our data suggest that dietary consumption of whole egg is more effective than 

supplemental cholecalciferol in maintaining vitamin D status in T2D rats. Furthermore, 

whole egg consumption reduced weight gain and body fat percentage in obese T2D rats, 

without an effect on body weight parameters in the lean phenotype. These data may support 

new dietary recommendations targeting body weight management and prevention of 

vitamin D insufficiency in T2D. 

The objective of the second study was to perform a follow-up, dose-response study 

to determine the minimal amount of dietary whole egg effective at maintaining vitamin D 

balance and attenuating the obese phenotype in T2D rats. A secondary objective of this 

study was to determine the effect of varying concentrations of whole egg on serum 

trimethylamine N-oxide (TMAO), a candidate cardiovascular disease risk factor. Male 

ZDF rats (n= 40) and their lean controls (n=40) were randomly assigned to a diet containing 

20% casein (CAS), 20% egg protein (20% EGG), 10% egg protein (10% EGG), 5% egg 

protein (5% EGG) or 2.5% egg protein (2.5% EGG) for 8 weeks. All diets contained 20% 

total protein (w/w). The 20% EGG diet maintained vitamin D balance in ZDF rats, whereas 

the 10, 5 and 2.5% EGG diets did not prevent vitamin D insufficiency. Body weight gain 

was reduced by 29% and 31% in ZDF rats consuming 20% EGG and 10% EGG diets, and 

by 16% and 12% in ZDF rats consuming 5% EGG and 2.5% EGG diets compared to the 

CAS diet. All EGG diets increased serum TMAO, regardless of genotype, although a 
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greater increase was observed in the ZDF genotype. These data demonstrate that whole 

egg consumption attenuates weight gain in a dose-dependent manner in T2D rats. 

Additionally, egg consumption increases circulating TMAO concentrations in both lean 

and T2D rats, with a heightened TMAO response in T2D rats.  

In the third study described in this dissertation,!the effect of dietary whole egg on 

metabolic biomarkers of insulin resistance was evaluated in T2D rats. Male ZDF rats 

(n=12) and their lean controls (n=12) were randomly assigned to a casein- or whole egg-

based diet. At week 5 of dietary treatment, mean blood glucose over the course of an insulin 

tolerance test was 32% higher in ZDF rats fed the whole egg-based diet compared to ZDF 

rats fed the casein-based diet. After 7 weeks of dietary treatment, whole egg consumption 

increased fasting blood glucose by 35% in ZDF rats. Furthermore, insulin-stimulated 

phosphorylation of key proteins in the insulin signaling pathway did not differ in skeletal 

muscle of ZDF rats fed casein- and whole egg-based diets. In lean rats, no differences were 

observed in insulin tolerance or skeletal muscle insulin signaling, regardless of 

experimental dietary treatment. These data suggest that whole body insulin sensitivity may 

be impaired by whole egg consumption in T2D rats, although no changes were observed 

in skeletal muscle insulin signaling that could explain this finding. 

The objective of the final study presented in this dissertation was to determine the 

effect of whole eggs and egg components (i.e. egg protein and choline) with respect to 

homocysteine balance in a folate-restricted rat model characterized by moderate 

hyperhomocysteinemia. Furthermore, this study sought to determine the differential effects 

of whole eggs, egg protein or supplemental choline on the hepatic expression and activity 

of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine "-synthase 
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(CBS), key enzymes in homocysteine metabolism. Male Sprague Dawley rats (N=48) were 

randomly assigned to a casein-based diet (n=12), a casein-based diet supplemented with 

choline (1.3%, w/w; n=12), an egg protein-based diet (n=12), or a whole egg-based diet 

(n=12). At week 2, half of the rats in each of the 4 dietary groups were provided a folate-

restricted (FR; 0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g 

folic acid/kg) diet for an additional 6 weeks. All diets contained 20% (w/w) total protein. 

Folate-restricted casein-fed rats exhibited a 53% increase in circulating homocysteine 

concentrations compared to FS rats fed a casein-based diet. In contrast, consumption of 

egg protein prevented hyperhomocysteinemia in FR rats compared to FR rats fed the 

casein-based diet. Hepatic BHMT activity was increased by 45% and 40%, respectively, 

by the egg protein-based and whole egg-based diets compared to the casein-based diets. 

These data demonstrate that dietary intervention with egg protein prevented elevated 

circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in 

part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein 

for dietary recommendations targeting hyperhomocysteinemia prevention.  
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CHAPTER 1.   !GENERAL INTRODUCTION 

Introduction 

 The increasing prevalence of metabolic diseases, such as obesity, type 2 diabetes 

(T2D) and cardiovascular disease, is a critical public health issue. In the United States, 

approximately two thirds of adults are overweight or obese (1), one in ten have diabetes (2), 

and cardiovascular disease remains the leading cause of death (3). An individual’s dietary 

patterns directly contribute to these disorders and can strongly influence health outcomes. 

Furthermore, it is well-documented that these disease states can alter nutrient metabolism. 

Thus, understanding the interactions between dietary components and health outcomes is 

important in the prevention and treatment of metabolic disease.  

 Eggs have a high nutrient-to-energy density ratio, and are a valuable source of 

protein and essential nutrients, including vitamin D, choline and B vitamins (4). Additionally, 

the 2015 Dietary Guidelines for Americans include eggs as part of a healthy eating pattern, in 

combination with a variety of vegetables, fruits, whole grains and low-fat dairy (5). As an 

affordable, nutrient-rich source of high-quality protein, whole eggs could offer several 

benefits, such as weight management and the maintenance of micronutrient balance, during 

the progression of metabolic disease. However, there is still uncertainty surrounding the 

potential health effects of dietary whole eggs in individuals with metabolic disease (6–9); 

therefore, further evaluation is necessary to inform dietary recommendations.   

The overall objectives of this research were to examine various metabolic responses to 

whole egg consumption in metabolic disease. The studies presented in this dissertation focus 

specifically on the impact of dietary whole eggs on micronutrient balance, body weight 
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management, and insulin resistance in rodent models of obesity, T2D and 

hyperhomocysteinemia, a metabolic disorder associated with cardiovascular disease. 

 

Dissertation Organization 

This dissertation consists of seven chapters with a general introduction, literature 

review, four manuscripts, and general conclusions. The first manuscript titled “Dietary whole 

egg consumption attenuates body weight gain and is more effective than supplemental 

cholecalciferol in maintaining vitamin D balance in type 2 diabetic rats” has been published in 

the Journal of Nutrition. This study compared whole egg consumption to supplemental 

cholecalciferol with respect to vitamin D homeostasis in a rat model of T2D. The work 

presented in the second manuscript was a follow-up, dose-response study investigating various 

concentrations of dietary whole egg with respect to vitamin D balance and weight gain in T2D 

rats and has been accepted for publication in the Journal of Nutrition for publication. The third 

manuscript titled “Whole egg consumption impairs insulin sensitivity in a rat model of obesity 

and type 2 diabetes” has been published in Current Developments in Nutrition. The aim of this 

study was to investigate the impact of whole egg consumption on insulin sensitivity and 

skeletal muscle insulin signaling using a rat model of T2D. The final manuscript evaluated the 

impact of dietary whole egg and egg components (i.e. egg protein and choline) with respect to 

homocysteine balance in a folate-restricted rat model of hyperhomocysteinemia. This work has 

been published in the Journal of Nutrition. All literature cited is based on the format of Journal 

of Nutrition and listed at the end of each chapter.  
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CHAPTER 2.   !LITERATURE REVIEW 

Type 2 Diabetes Mellitus 

Diagnostic Criteria 

An estimated 30 million adults are living with diabetes in the U.S. (1), with type 2 

diabetes (T2D) accounting for 90-95% of all cases (2). T2D is a multifactorial disease 

characterized by a progressive loss of "-cell mass and/or function, in combination with insulin 

resistance, which manifests as hyperglycemia. Diagnostic criteria for T2D include fasting 

plasma glucose #126 mg/dL, 2 hour plasma glucose #200 mg/dL during a 75 g oral glucose 

tolerance test, glycosylated hemoglobin A1C (HbA1C) #6.5%, or a random plasma glucose of 

#200 mg/dL in a patients with classic symptoms of hyperglycemia (2). Diagnosis requires 

unequivocal hyperglycemia or at least two abnormal tests (2). It is also estimated that 84 

million adults in the U.S. have prediabetes (1), which is classified by the presence of impaired 

fasting glucose (fasting plasma glucose 100-125 mg/dL), impaired glucose tolerance, or 

HbA1C of 5.7-6.4% (2). Individuals with prediabetes are at risk for the development of T2D 

and cardiovascular disease (CVD). 

 

Pathophysiology 

The development of T2D is triggered by a complex interplay between environmental 

factors and genetic predisposition. Key risk factors for T2D include the following: overweight 

and obesity, physical inactivity, family history of T2D, prior history of gestational diabetes, 

age 45 or older, and non-white race or ethnicity (3). Excess weight gain and obesity are among 

the most important predictors of T2D development, and their association with insulin 

resistance is likely a driving factor (4–6).   
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In a healthy individual in the postprandial state, glucose metabolism by the "-cell 

triggers insulin secretion. Glucose enters the "-cell via the glucose transporter 2 (GLUT 2) and 

then undergoes glycolysis, leading to an increase in ATP within the cell (7). The rise in 

intracellular ATP inhibits the ATP-sensitive K+ channel, causing depolarization of the "-cell. 

This activates voltage-gated Ca2+ channels, causing Ca2+ influx and an increase in intracellular 

Ca2+ (7). The elevation in intracellular Ca2+ leads to the exocytosis of insulin contained within 

insulin secretory granules, releasing insulin into the bloodstream (7). Insulin binding to the 

insulin receptor at target tissues activates the receptor, which transduces its signal to 

downstream effectors through a cascade of phosphorylation events (7). In skeletal muscle and 

adipose tissue, insulin stimulates translocation of the glucose transporter 4 (GLUT 4) from the 

cytosol to the plasma membrane, thereby promoting glucose uptake and storage (7). In a state 

of insulin resistance and "-cell dysfunction these processes are impaired, resulting in an 

inability to maintain blood glucose control (8,9). 

It is widely agreed that obesity is a major risk factor in the development of insulin 

resistance, and numerous studies suggest that chronic low-grade inflammation plays an 

important role in this process (10,11). Adipose tissue modulates metabolism by secreting 

several cytokines and hormones. The proper balance of these cytokines and hormones is altered 

in overweight and obese individuals, activating pro-inflammatory pathways that suppress 

insulin signaling and lead to dysfunction of the pancreatic islet "-cells (12). Increased 

concentrations of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte 

chemoattractant protein-1 (MCP-1), and decreased concentrations of the anti-inflammatory 

factor adiponectin, are commonly observed in states of obesity and insulin resistance (11,13).  
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In insulin resistance individuals, a progressive decline in "-cell function characterizes 

the transition from normal to impaired glucose tolerance and then to overt T2D. In response to 

a decrease in insulin sensitivity, the pancreatic "-cells increase insulin release in attempt to 

maintain normal glucose tolerance (8,14). This adaptive response involves an increase in "-

cell mass and activity (15). However, as insulin resistance progresses, the "-cell is 

overstimulated, which results in declining "-cell mass and function, eventually leading to 

apoptosis (16,17). The decreased insulin release owing to "-cell dysfunction, combined with 

impaired insulin sensitivity reduced glucose uptake, results in persistent hyperglycemia and 

T2D (8). 

 

Prevention and Treatment via Lifestyle Modification 

The American Diabetes Association (ADA) recommends referral of prediabetic 

patients to an intensive lifestyle intervention with the objectives to achieve and maintain a 7-

10% weight loss and to increase moderate intensity physical activity to a minimum of 150 

minutes/week (18,19). Dietary patterns such as a Mediterranean eating plan or a low-fat, low-

calorie eating plan should be encouraged to assist in weight loss and diabetes prevention (20–

22). Although low-carbohydrate diets have shown beneficial short-term effects on glycemic 

control in some studies (23), further studies including long-term outcomes are needed to 

determine whether low-carbohydrate diets are beneficial for patients with prediabetes (24). 

Emphasis should be placed on increasing intake of fruits, vegetables, whole grains, legumes 

and nuts while minimizing intake of refined foods (25). As evidenced by observational studies, 

higher intake of particular dietary components, including nuts, berries, yogurt, coffee and tea, 
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is associated with reduced diabetes risk, whereas intake of red meats and sugar-sweetened 

beverages are associated with an increased risk (26–29).  

It is well-established that the onset of T2D can be prevented or delayed through lifestyle 

modifications, such as dietary modification, physical activity and weight loss. Several studies 

have shown long-term diabetes risk reduction in patients previously involved in shorter-term 

lifestyle interventions. In the Finnish Diabetes Prevention Study, overweight, glucose 

intolerant individuals assigned to a lifestyle intervention group exhibited significantly greater 

weight reduction, as well as improvements in glycemia and lipemia, compared to the control 

group after 3 years of follow-up (30). After 7 years of total follow-up, diabetes risk was reduced 

by 43% in individuals in the lifestyle intervention group, which was associated with reduced 

weight loss and fat intake and increased physical activity and intake of dietary fiber (31). In 

the Da Qing Diabetes Study, a Chinese cohort of individuals with impaired glucose tolerance 

were assigned to either a control group or to diet only, exercise only, or a combination of diet 

and exercise intervention for a period of 6 years (32). During the 6-year active intervention 

period, diabetes incidence was 51% lower in the intervention groups compared to the control 

group, and 43% lower during a 20-year follow-up period. These differences in diabetes 

incidence occurred in the absence of significant body weight differences between control and 

intervention groups (33). Finally, in the U.S. Diabetes Prevention Program Outcomes Study, 

diabetes incidence was reduced by 58% after 2.8 years of intensive lifestyle intervention (34). 

Diabetes incidence was reduced by 34% and 27% in the lifestyle intervention group at 10 and 

15 years of follow-up, respectively, indicating long-lasting preventative effects of lifestyle 

intervention (34,35).  
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In individuals with diagnosed T2D, weight loss and weight maintenance are important 

in diabetes management, as even modest weight loss has been shown to improve glycemic 

control (36,37). For example, in a multi-center, randomized, controlled trial in type 2 diabetic 

subjects, individuals assigned to intensive lifestyle intervention experienced an 8.6% weight 

loss after 1 year follow-up, compared to 0.7% in the group assigned to general diabetes 

education, as well as a significant reduction in HbA1C (38).  After 4 years of follow-up, the 

intensive lifestyle intervention group was significantly more likely to experience complete or 

partial remission of T2D (39). For overweight or obese patients with T2D, it is recommended 

to achieve and maintain a weight loss of >5% through diet, physical activity and behavioral 

therapy (40). The ADA recommends adherence to healthful eating patterns and engagement in 

150 minutes/week of moderate physical activity to achieve and maintain weight management 

goals, attain glycemic targets and prevent or delay complications in individuals with diagnosed 

T2D (41). Reducing overall carbohydrate intake using approaches such as minimizing added 

sugars and refined grains and emphasizing non-starchy vegetables, has demonstrated 

considerable evidence for meeting glycemic targets and is achievable with numerous eating 

patterns (19). A variety of eating patterns have shown success in diabetes management, 

including the Mediterranean diet, Dietary Approaches to Stop Hypertension, low-carbohydrate 

diets and plant-based diets (42–46). Overall, nutrient-density and portion control should be 

emphasized to improve glycemia and weight management. 

 

Vitamin D  

Biosynthesis and Metabolism  

Vitamin D is a steroid hormone that can be produced endogenously upon sunlight 

exposure to the skin, or can be obtained through dietary sources or supplementation. 
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Endogenous production of vitamin D3 occurs when ultraviolet B photons penetrate the 

epidermis, resulting in photolysis of cutaneous 7-dehydrocholesterol to previtamin D3. 

Previtamin D3 then isomerizes to vitamin D3 (cholecalciferol), which is absorbed into the 

circulation (47–49). Vitamin D is obtained from the diet either in the form of vitamin D3, found 

in foods of animal origin, or vitamin D2 (ergocalciferol), found in plants and fungi (48). 

Regardless of whether it is obtained through sunlight exposure, dietary sources or 

supplementation, vitamin D is biologically inert and must undergo two hydroxylation reactions 

to be converted to the biologically active form.  

Vitamin D metabolites are lipophilic and therefore require carrier proteins for transport 

in the circulation, primarily vitamin D-binding protein (DBP). Vitamin D3 absorbed into 

circulation is transported by DBP to the liver, where it undergoes hydroxylation to 25-

hydroxyvitamin D3 (25(OH)D) by 25-hydroxylase (Figure 2-1). There are several cytochrome 

p450 (CYP) enzymes capable of 25-hydroxylase activity, including CYP27R1 and CYP27A1 

(50). Following hydroxylation in the liver, 25(OH)D is secreted back into the circulation where 

it is bound by DBP. DBP has a high affinity for vitamin D3 metabolites, and nearly all 

circulating 25(OH)D is found in a complex with DBP (51). The 25(OH)D-DBP complex is 

then delivered to the kidney by receptor-mediated endocytosis via the membrane-associated 

proteins megalin and cubilin in the renal proximal tubule and the intracellular adaptor protein 

disabled-2 (Dab2) (52). 25(OH)D internalized into the renal proximal tubule can undergo 

hydroxylation to 1,25-dihydroxyvitamin D3 (1,25D; calcitriol), the biologically active form of 

vitamin D, by 25-hydroxyvitamin D 1α-hydroxlase (CYP27B1), or reabsorption into 

circulation (Figure 2-1) (48). The presence of 25-hydroxyvitamin D 1α-hydroxlase has also 

been reported in extrarenal tissues, such as the colon, pancreas, brain and placenta, although 
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1,25D is predominantly synthesized in the kidney (53). Lastly, vitamin D catabolism and 

inactivation is carried out by the enzyme 24-hydroxylase (CYP24A1) (Figure 2-1). Both 

25(OH)D and 1,25D are targets for 24-hydroxylase, which is able to catalyze hydroxylation 

reactions on the side chain of both forms of the vitamin. The 24- and 23- hydroxylated products 

are then targeted for excretion (50). 

 

Figure 2-1: Vitamin D Metabolism (50). CYP, cytochrome p450, FGF23, fibroblast growth 
factor 23, PTH, parathyroid hormone, VDR, vitamin D receptor, 1!,25-(OH)2D3, 1,24-
dihydroxyvitamin D3; 25-OH-D3, 25-hydroxyvitamin D3. 

Mechanism of Action 

Synthesis of the active hormone 1,25D is a highly regulated process, which is 

influenced by circulating concentrations of calcium and phosphorus, parathyroid hormone 

(PTH) and fibroblast growth factor 23 (FGF23) (48). The classical, hormonal actions of 1,25D 

are related to the maintenance of bone health via regulation of circulating calcium and 

phosphorus. To maintain plasma calcium within a normal range, 1,25D acts on the intestines, 

bones and kidneys to increase calcium absorption, mobilize calcium from bone and stimulate 
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renal reabsorption of calcium (54). CYP27B1, responsible for 1,25D synthesis, is subject to 

upregulation by PTH, low plasma calcium and low plasma phosphorus, ensuring calcium 

homeostasis (50). In contrast, FGF23, stimulated by elevated circulating phosphorus, and 

1,25D inhibit CYP27B1 (48).  

The genomic actions of 1,25D are mediated by the vitamin D receptor (VDR), a ligand-

activated transcription factor localized in the nuclei of target cells (55). Binding of 1,25D to 

VDR triggers the formation of a heterodimer with the retinoid X receptor (RXR). The VDR-

RXR heterodimer then recognizes and binds vitamin D response elements (VDREs) in the 

DNA sequence of genes regulated by vitamin D, thereby regulating gene transcription (55). 

Regulation of gene expression by 1,25D is well-established in the classical vitamin D target 

tissues, such as the intestines, kidney, bone and parathyroid. It also plays a role in a diverse 

range of biological responses, including the regulation of immune function, cell proliferation, 

differentiation and apoptosis (55,56). 

 

Status 

Circulating concentrations of 25(OH)D are considered the best indicator of vitamin D 

status, and represent the combined contributions of cutaneous vitamin D synthesis, dietary 

intake and supplementation (57). The defined cutoff values for vitamin D status, which include 

deficiency, insufficiency, sufficiency and toxicity, remain a subject of debate amongst the 

scientific community, and guidelines regarding vitamin D status differ between the Institutes 

of Medicine (IOM) and the Endocrine Society (Table 2-1) (58).  

The 2011 IOM Committee concluded that a serum 25(OH)D level of > 20 ng/mL (> 50 

nmol/L) is sufficient to provide maximal calcium absorption, minimize risk of rickets in 

children, and minimize risk of osteomalacia adults (57). In contrast, the Endocrine Society 
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concluded that a serum 25(OH)D concentration of at least 30 ng/mL (75 nmol/L) is optimal 

(59). It is important to note that guidelines set forth by the IOM rely on bone health as an 

indicator of vitamin D adequacy for the general population (57), whereas the objective of the 

Endocrine Society Clinical Practice Guideline was to provide recommendations to clinicians 

for the evaluation, prevention and treatment of vitamin D deficiency, with a focus on patients 

at risk for deficiency (59). Some argue that the IOM cutoff of 20 ng/mL may not be sufficient 

to provide the potential benefits of vitamin D (58). For example, the PTH response to varying 

levels of serum 25(OH)D may depend on both gender and age, with certain individuals 

requiring serum 25(OH)D > 30 ng/mL to minimize PTH concentrations (60). Additionally, 

studies have demonstrated reduced fracture risk with a mean serum 25(OH)D of 30 ng/mL, 

whereas risk reduction has not been shown with a serum 25(OH)D of 20 ng/mL (61,62). Lastly, 

suboptimal vitamin D status is associated with various chronic diseases, including obesity, type 

2 diabetes and chronic kidney disease, and a higher dose of vitamin D may be required to 

provide potential nonskeletal benefits (63,64). 

 

Table 2-1: Vitamin D status based on circulating concentrations of 25-hydroxycholecalciferol. 

Vitamin D Status Institutes of Medicine Endocrine Society 
ng/mL nmol/L ng/mL nmol/L 

Deficient < 12 < 30 < 20 < 50 
Insufficient 12 - 20 30 - 50 21 - 29 53 - 73 
Sufficient > 20 > 50 30 - 100 75 
Toxic > 50 > 125 $ $ 

 

The RDA for vitamin D for adults is set at 600 IU (15 µg) (57). It is recognized that 

vitamin D can be obtained through both sunlight exposure and dietary intake. However, there 

are numerous factors that impede cutaneous vitamin D synthesis, including latitude, skin 
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pigmentation, age, sunscreen and sun exposure behaviors, such as a person’s attire, physical 

activity and working environment. As such, recommendations assume minimum sun exposure 

and are developed using the estimated dietary intakes of vitamin D to achieve serum 25(OH)D 

concentrations of 20 ng/mL, deemed sufficient for the maintenance of bone health (57).  

Vitamin D insufficiency, following the IOM definition of 12 - 20 ng/mL (30 - 50 

nmol/L) has been reported to affect an estimated 32% of the U.S. population (65). Furthermore, 

based on NHANES 2001-2006 data, an estimated 10% of the U.S. population presented with 

serum 25(OH)D < 30 nmol/L, putting them at risk for fractures and skeletal abnormalities such 

as rickets and osteomalacia (65). Individuals at particularly high risk for deficiency include 

those with increased skin pigmentation or insufficient sun exposure, pregnant and lactating 

women, and the elderly (66–68). The 2015 Dietary Guidelines for Americans identified 

vitamin D as a nutrient of public health concern, as vitamin D intake falls below the Estimated 

Average Requirement set forth by the IOM, and underconsumption is associated with adverse 

health outcomes (69). Indeed, 69% of vitamin D-containing supplement users and 95% of non-

supplement users in the U.S. have usual vitamin D intakes that fall below the Estimated 

Average Requirement (70).  

The Upper Limit for vitamin D intake is set at 4000 IU/d, a level at which sustained, 

long-term intake will not cause harm to the general population (57). However, evidence 

regarding the health effects of long-term, moderately high intakes of vitamin D is lacking, as 

most available evidence is based on exposures of less than 6 months. Although conditions of 

vitamin D toxicity are unlikely from a combination of routine sources, cases of vitamin D 

toxicity have been reported following prolonged high-dose supplementation. In a risk 

assessment based on human clinical trials, Hathcock et al. concluded that that an intake of 
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10,000 IU/d was not associated with adverse outcomes (71), while toxic side effects have been 

documented at doses at or above 50,000 IU/d for periods ranging from weeks to months (57). 

Vitamin D toxicity is characterized by hypercalcemia, owing to increased bone resorption (72). 

As circulating calcium increases, renal function decreases while CVD risk increases, making 

the condition life threatening if left untreated (57). 

 

Vitamin D and Type 2 Diabetes 

Accumulating evidence suggests that vitamin D insufficiency may play a role in T2D 

development, though the potential benefits of vitamin D supplementation in T2D prevention 

and treatment remains a subject of debate. Receptors for 1,25D have been found in the β-cell, 

liver, muscle and adipose tissue, and the enzymes necessary for vitamin D activation are also 

expressed in these tissues (73). Results from in vitro and in vivo studies have shown impaired 

glucose-stimulated insulin secretion under vitamin D-deficient conditions, and restored insulin 

secretion with vitamin D supplementation (74–77). Some of these studies also demonstrated 

impaired glucose tolerance with vitamin D deficiency (75).  

Epidemiological studies show a relatively consistent association between vitamin D 

deficiency and the prevalence of T2D (78,79). However, it is important to note many 

confounding factors, such as physical activity, adiposity and dietary habits, that are linked to 

vitamin D status and could affect T2D risk. In the Nurses’ Health Study, total vitamin D intake 

was not associated with T2D incidence after adjustment for potential confounding factors (80). 

However, T2D risk was 33% lower in women with the highest combined intake of calcium 

and vitamin D (>1200 mg/day and >800 IU/day, respectively) compared to women with the 

lowest combined intake of calcium and vitamin D (<600 mg/day and <400 IU/day, 

respectively) (80).  
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Observational studies indicate an inverse association between vitamin D status, insulin 

sensitivity and β-cell function, though these associations are not always consistent (81–84). 

Furthermore, a number of studies report improvements in β-cell function, insulin sensitivity 

and glycemia following intervention with vitamin D supplementation (85–88). In a 

randomized, controlled trial in patients with T2D, individuals that received 4000 IU vitamin 

D3 daily for 2 months had a significant reduction in HbA1C compared to individuals that 

received a placebo, although no differences in HOMA-IR were observed (88). A placebo-

controlled trial in adults at high risk for T2D found that supplementation with 2000 IU/day of 

vitamin D3 for 16 weeks resulted in improved β-cell function in the supplemental vitamin D3 

group (87). In this study, the effects of vitamin D on insulin sensitivity were insignificant, 

indicating that vitamin D may predominantly effect the "-cell (87). Other studies in healthy 

adults or T2D patients also report no changes in insulin sensitivity following supplementation 

(89,90). In contrast, two clinical trials in centrally obese or insulin resistance subjects 

demonstrated improved insulin sensitivity following short-term vitamin D supplementation 

(85,86). A recent meta-analysis of randomized controlled trials of vitamin D supplementation 

in adults with T2D reported a modest reduction in HbA1C, but no differences in fasting blood 

glucose, following treatment with vitamin D (91). Similarly, in a meta-analysis performed by 

Wu et al., vitamin D supplementation reduced HbA1C but had no effect on fasting blood 

glucose (92). While research suggests that vitamin D may play a role in diabetes prevention, 

considerable homogeneity exists between studies, both regarding study design, participants 

and outcomes.    
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Dietary Sources 

As described previously, vitamin D can be acquired through sunlight exposure or 

through the diet. Fatty fish, such as salmon and tuna, are among the best naturally occurring 

dietary sources of vitamin D, followed by liver and other organ meats, egg yolks and cheeses 

(93). Certain varieties of mushrooms also contain vitamin D in varying amounts (93). Foods 

of animal origin provide vitamin D in the form of vitamin D3 and its metabolite, 25(OH)D, 

whereas plants and fungi provide vitamin D2 (93). Notably, few other foods naturally contain 

vitamin D and foods naturally high in vitamin D are not frequently consumed. Therefore, in 

cases of insufficient cutaneous synthesis, the US population is largely dependent on food 

fortification and supplementation to maintain adequate vitamin D status (94). The primary 

vitamin D-fortified food source in the U.S. is milk. This fortification was initiated on a 

voluntary basis in the 1920’s after vitamin D was identified as critical to the prevention of 

rickets (57).  Other vitamin D fortified foods include ready-to-eat breakfast cereals, as well as 

certain brands of orange juice, yogurt and margarine (Table 2-2) (93). 

Systematic reviews of randomized controlled trials have provided evidence that 

vitamin D fortification in the food supply increases serum 25(OH)D in both children and adults 

(95–97). Recent evidence from Finland demonstrated the effectiveness of food fortification 

policy as a strategy to prevent vitamin D deficiency in the general population (98). In this 

Finnish cohort, 91% of non-supplement users reached serum 25(OH)D concentrations >50 

nmol/L through consumption of vitamin D-fortified milk products and fat spreads, compared 

to 44% pre-fortification (98). Similarly, in a randomized controlled trial, Madsen et al. reported 

that vitamin D fortification of milk and bread maintained wintertime vitamin D status >30 

nmol/L and >50 nmol/L in 99% and 84% of individuals, respectively (99). In addition to food 

fortification, animal feeding practices can increase both the vitamin D3 and 25(OH)D content 
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of foods such as meat, poultry and eggs, and may provide an additional means to improve 

vitamin D status in the general population (100–103). 

Table 2-2: Food Sources of Vitamin D* 

 

Currently, the United States Department of Agriculture Food Composition Database 

does not take the 25(OH)D content of animal-based foods into account. Given the frequent 

consumption of animal-based food products in the US, this may lead to an underestimation of 

the population’s vitamin D intake (104). Accurate assessment of the population’s current 

vitamin D intake is critical prior to the development of food fortification strategies to prevent 

Food Vitamin D content (IU) 
Fortified dairy products  
Milk, 1 c 115 
Yogurt (fortified), 1 c 115 
Other fortified foods  
Orange juice, 1 c 100 
Ready-to-eat cereals (Cheerios), 1 oz 38 
Ready-to-eat cereals (Total), 1 oz 100 
Eggs, 1 large 44 
Seafood  
Salmon, sockeye, canned, 1 oz 238 - 243 
Trout, rainbow, cooked, 1 oz 224 
Swordfish, cooked, 1 z 204 
Salmon, pink, canned, 1 oz 159 – 164 
Salmon, sockeye, cooked, 1 oz 149 
Sturgeon, cooked, 1 oz 146 
Mackerel, cooked, 1 oz 131 
Mackerel, canned, 1 oz 83 
Tuna, light, canned in oil, 1 oz 78 
Herring, cooked, 1 oz 62 
Sardines, canned in oil, 1 oz 56 
Tilapia, cooked, 1 oz 42 
Tuna, white, canned in water, 1 oz 23 
Tuna, light, canned in water, 1 oz 13 
*Adapted from Scientific Report of the 2015 Dietary Guidelines Committee (70)  



www.manaraa.com

18 

deficiency. Evidence suggests that intake of 25(OH)D is ~5 times more potent in raising serum 

25(OH)D compared to an equivalent amount of vitamin D3 (105). However, estimates of the 

potency factor vary from ~1.4 to 10, and there is not yet a consensus on the potency factor that 

should be used (106–109). Although the results of current food fortification programs provide 

compelling evidence for the use of vitamin D as a potential fortificant, a better understanding 

of the vitamin D content of foods, as well as simulations regarding the impact of vitamin D 

fortification, are required before dietary intervention. 

 

Hyperhomocysteinemia 

 

Homocysteine Metabolism 

Homocysteine is a sulfur-containing amino acid derived from the metabolism of the 

essential amino acid methionine. Methionine is activated by methionine adenosyltransferase 

(MAT) to form S-adenosylmethionine (SAM), the universal methyl donor required for almost 

all transmethylation reactions. All SAM-dependent transmethylation reactions generate S-

adenosylhomocysteine (SAH), which is then hydrolyzed by SAH hydrolase (SAHH) to form 

adenosine and homocysteine (110) (Figure 2-2). Homocysteine produced by SAM-dependent 

transmethylation must be remethylated back to methionine or irreversibly catabolized to 

cysteine by transsulfuration. Homocysteine remethylation occurs via both folate-dependent 

and independent mechanisms (Figure 2-2). 

 



www.manaraa.com

19 

 

Figure 2-2: Folate, methyl group and homocysteine metabolism. BHMT, betaine homocysteine 
S-methyltransferase; CBS, cystathionine "-synthase; DMG, dimethylglycine; MAT, 
methionine adenosyltransferase; MS, methionine synthase; MTHFR, 
methylenetetrahydrofolate reductase; SAH, S-adenosylhomocysteine; SAHH, S-
adenosylhomocysteine hydrolase; SAM, S-adenosylmethionine; THF, tetrahydrofolate; 5-
CH3-THF, 5-methyltetrahydrofolate, X, methyl group acceptor. 

 

The folate-dependent remethylation pathway utilizes the donation of a methyl group 

by 5-methyltetrahydrofolate (5-CH3-THF) via the vitamin B12-dependent enzyme methionine 

synthase (MS). Folate-independent remethylation is catalyzed by betaine-homocysteine S-

methyltransferase (BHMT), a reaction that utilizes betaine, derived from the oxidation of 

choline, as a methyl donor. Alternatively, the irreversible catabolism of homocysteine is 

initiated by vitamin B6-dependent cystathionine "-synthase (CBS) to form cystathionine, 

which is further metabolized to cysteine (110) (Figure 2-2). 
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Pathogenesis 

 Hyperhomocysteinemia is a condition characterized by abnormally high 

concentrations of circulating homocysteine. Normal serum/plasma homocysteine 

concentrations range from 5-15 µmol/L, whereas concentrations of 16-100 µmol/L and >100 

µmol/L represent moderate and severe hyperhomocysteinemia, respectively (111). Several 

factors have been associated with the development of hyperhomocysteinemia, such as genetics, 

chronic disease, male gender, advancing age and nutritional deficiencies (112–114). Moderate 

elevations in circulating homocysteine occur in 5-7% of the general population and are 

typically attributed to environmental and genetic factors, whereas cases of severe 

hyperhomocysteinemia are rare and can be attributed to major genetic mutations in key 

enzymes implicated in homocysteine metabolism (115). Hyperhomocysteinemia is recognized 

as an independent risk factor for cardiovascular disease; thus, maintenance of homocysteine 

balance carries important public health implications.  

Several polymorphisms in genes encoding enzymes responsible for homocysteine 

metabolism have been described, including mutations in the 5,10-methylenetetrahydrofolate 

reductase (MTHFR) and CBS genes. MTHFR catalyzes the conversion of 5,10-

methylenetetrahydrofolate into 5-methyltetrahydrofolate (5-CH3-THF), which serves as a 

methyl donor in the folate-dependent remethylation of homocysteine to methionine. Normal 

MTHFR activity is critical in maintaining sufficient 5-CH3-THF concentrations to prevent the 

accumulation of homocysteine. The MTHFR gene has at least two functional polymorphisms, 

the most common of which encodes a cytosine to thymine substitution at nucleotide 677 

(C677T) (116). The MTHFR C677T polymorphism results in reduced enzyme activity 

concurrent with moderately elevated circulating homocysteine concentrations (117). CBS 
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deficiency is an autosomal recessive disorder that impairs homocysteine disposal via the 

transsulfuration pathway. Mutations in the CBS gene cause homocystinuria, a condition 

characterized by high concentrations of homocysteine in the urine (118). In the absence of 

CBS, homocysteine accumulates in tissues and is exported to the blood, resulting in severe 

hyperhomocysteinemia. Circulating homocysteine concentrations have been reported to 

increase 10-20-fold in untreated patients (119). Clinical features of CBS-deficient patients 

include mental retardation, ectopic lenses and a high incidence of vascular pathology, where 

about 50% of untreated patients experience a thrombotic event by age 30 (120,121). The 

estimated frequency of CBS deficiency is 1:100,000 in western countries (122). 

Maintenance of homocysteine balance is dependent on the vitamins folate, vitamin B6 

and vitamin B12, which function as cofactors and substrates in homocysteine metabolism, as 

well as the essential nutrient choline. Several studies report an inverse association between 

vitamin B6, folate and vitamin B12 status and circulating concentrations of homocysteine 

(123–126). Vitamin B6 is required for the activity of CBS, the enzyme responsible for the 

irreversible catabolism of homocysteine. Vitamin B6 is widespread in the food supply, making 

deficiency uncommon. However, the prevalence of vitamin B6 deficiency is increased in 

certain groups, such as alcoholics or individuals with liver disease (127).  In the folate-

dependent homocysteine remethylation reaction catalyzed by methionine synthase, 5-CH3-

THF functions as a methyl donor and vitamin B12 serves as a key cofactor required for 

methionine synthase activity. A deficiency in either of these vitamins impairs homocysteine 

remethylation via methionine synthase. It is estimated that the prevalence of 

hyperhomocysteinemia (defined as > 13 µmol/L) was reduced by ~50% following the 1996 

Food and Drug Administration mandate requiring folic acid fortification of enriched grain 
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products in the United States (128). As such, current cases of hyperhomocysteinemia due to 

nutritional deficiency are likely related to a deficiency in vitamin B12. A vitamin B12 

deficiency impacts homocysteine metabolism directly by impairing methionine synthase 

activity, which, in turn, traps methyl groups in the form of 5-CH3-THF (129). Vitamin B12 is 

found exclusively in foods of animal origin, placing vegans at risk for deficiency (130). In a 

study evaluating B vitamin status and circulating homocysteine, hyperhomocysteinemia was 

observed in 66% of individuals adhering to a vegan diet (131). Additionally, vitamin B12 

absorption requires the release of protein-bound vitamin B12 by hydrochloric acid and gastric 

protease, followed by the binding of free vitamin B12 to intrinsic factor, which is released from 

the parietal cells of the stomach. Thus, patients with conditions such as pancreatic exocrine 

insufficiency and atrophic gastritis, a condition affecting 10-30% of older adults, are at risk for 

hyperhomocysteinemia subsequent to vitamin B12 malabsorption (132). It is estimated that 

over 12% of individuals over the age of 60 are vitamin B12 deficient, which may explain the 

increase in circulating homocysteine concentrations associated with aging (126,133). Lastly, 

plasma homocysteine is inversely associated with dietary intakes of choline and betaine, which 

function as a methyl donors in the folate-independent remethylation of homocysteine via 

BHMT (134–136).  

In addition to genetic and nutritional etiologies of hyperhomocysteinemia, elevated 

circulating homocysteine is also associated with male gender and chronic disease. 

Hyperhomocysteinemia is strongly associated with end-stage renal disease, significantly 

increasing the risk of vascular comorbidities in affected patients (137,138). The exact 

mechanism underlying this association is not completely understood; however, it has been 

hypothesized that increased concentrations of protein-bound homocysteine may impair the 
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glomerular filtration rate, decreasing renal clearance of homocysteine (139). Other disease 

states associated with high circulating concentrations of homocysteine include 

hypothyroidism, estrogen deficiency, and the use of several medications, such as phenytoin, 

sulfzalazine and methotrexate. These medications may impair normal homocysteine 

metabolism by depleting folate stores or by impairing the synthesis of vitamin cofactors 

involved in homocysteine remethylation and transsulfuration (140). Lastly, a number of studies 

report gender effects on total homocysteine, with men exhibiting significantly higher 

circulating homocysteine concentrations compared to women (141–143). 

 

Association with Cardiovascular Disease 

The relationship between hyperhomocysteinemia and cardiovascular risk was first 

described in patients with homocystinuria due to a hereditary deficiency in CBS. The high 

incidence of vascular pathology in homocystinuric children, combined with data from animal 

studies, led McCully and Wilson to hypothesize that elevated circulating homocysteine 

concentrations may cause arteriosclerosis (144). Since then, numerous reports have established 

increased risk of several cardiovascular pathologies, including coronary artery disease, 

myocardial infarction and stroke, in patients suffering from both moderate and severe forms of 

hyperhomocysteinemia. Findings from an early meta-analysis indicated that 10% of the 

populations’ risk of coronary artery disease was attributable to circulating homocysteine (145). 

A more recent meta-analysis found a 32% increase in ischemic heart disease risk and a 59% 

increased risk of stroke associated with each 5 µmol/L elevation in circulating homocysteine 

(146). In a statistical analysis of the Multi-Ethnic Study of Atherosclerosis and National Health 

and Nutrition Examination Survey III datasets, hyperhomocysteinemia (> 15 µmol/L) was 
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significantly associated with cardiovascular events and mortality (147). In a prospective cohort 

of middle-aged women, elevated homocysteine was an independent risk factor for myocardial 

infarction incidence and mortality (148). Although the mechanisms underlying the relationship 

between hyperhomocysteinemia and cardiovascular disease have not been fully elucidated, 

factors that likely play a role include oxidative stress, dysregulated methylation, and post-

translational modification by homocysteinylation (149). Homocysteine oxidation results in the 

production of superoxide and hydroxyl radicals, reactive oxygen species known to induce 

endothelial cell injury (150,151). Altered homocysteine and methyl group metabolism affects 

the transmethylation capacity of the cell and there is evidence that hyperhomocysteinemia 

results in DNA and protein hypomethylation, thereby regulating gene expression and 

modifying protein function (152–156). Lastly, homocysteine thiolactone, a thioester 

metabolite of homocysteine, has been shown to target and covalently bind numerous 

circulating proteins, modifying their structure and/or function (157,158). The aforementioned 

mechanisms may result in endothelial dysfunction, increased collagen synthesis leading to 

decreased elasticity of the arterial wall, and smooth muscle cell proliferation, factors 

implicated in the pathogenesis of cardiovascular disease (149,159).  

 

Treatment  

The demonstration that hyperhomocysteinemia is an independent risk factor for 

cardiovascular disease has generated interest in homocysteine-lowering therapies as a means 

to reduce cardiovascular disease-associated morbidity and mortality. Treatment strategies for 

patients with hereditary homocystinuria due to CBS deficiency are as follows: 1) increase 

residual CBS activity with pharmacological doses of vitamin B6, 2) restrict dietary methionine 

to decrease load on the transsulfuration pathway, 3) provide oral betaine to increase 
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homocysteine remethylation to methionine (160). CBS deficient patients can be classified as 

either responsive or non-responsive to treatment with high-dose vitamin B6 (120). In vitamin 

B6-unresponsive patients, CBS deficiency is managed by methionine restriction and betaine 

supplementation (160). For individuals with moderate hyperhomocysteinemia, a reduction in 

circulating homocysteine can be accomplished by increased intake of the B vitamins folate, 

vitamin B6 and vitamin B12, either by increasing dietary intake, supplementation, or both. The 

current Recommended Dietary Allowance (RDA) for these vitamins is 400 µg of dietary folate 

equivalents, 1.3 mg of vitamin B6 and 2.4 µg of vitamin B12 for non-pregnant, non-lactating 

adults. The RDA for vitamin B6 increases to 1.5 mg and 1.7 mg, respectively, for females and 

males over 51 years of age (161). Sources of these vitamins include fortified grains and cereals, 

dark leafy green vegetables, and legumes as a source of folate; fortified breakfast cereals, fish, 

beef, poultry and starchy vegetables as a source of vitamin B6; and fish, meat, poultry, eggs, 

milk, and fortified breakfast cereals as a source of vitamin B12 (161).  

Several epidemiological studies have shown associations between dietary intake 

patterns and circulating homocysteine (123,126,162,163), and dietary interventions have been 

successful at reducing plasma homocysteine (164–168).  In the Framingham Heart Study, 

intake of multivitamin supplements, breakfast cereals and leafy green vegetables was 

associated with reduced concentrations of circulating homocysteine (162). In a randomized, 

controlled trial of subjects with plasma homocysteine concentrations #9 µmol/L, folic acid 

supplementation, consumption of folic acid-fortified breakfast cereals, and increased 

consumption of folate-rich foods decreased plasma homocysteine by 21, 24 and 9%, 

respectively (168). Decreases in plasma homocysteine have also been reported in dietary 

interventions aimed at increasing fruit and vegetable intake (164–166). Vitamin therapy with 
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supplemental folic acid, vitamin B6 and vitamin B12 has been highly successful at lowering 

circulating homocysteine. Numerous clinical trials have shown homocysteine-lowering 

benefits of B vitamin therapy, with reported reductions up to 39% (169–177).   

Results from the Homocysteine Studies Collaboration meta-analysis predicted an 11% 

and 19% reduction in risk of ischemic heart disease and stroke, respectively, per 3 µmol/L 

reduction in homocysteine (178). In patients with severe hyperhomocysteinemia due to CBS 

deficiency, treatment with various combinations of vitamin B6, folic acid, vitamin B12, dietary 

methionine restriction and betaine reduced homocysteine concentrations from severe to 

moderately elevated, and markedly reduced vascular events (179). However, B vitamin therapy 

has not substantially improved cardiovascular outcomes in patients with moderate 

hyperhomocysteinemia, despite successful reductions in circulating homocysteine. For 

example, in the Vitamin Intervention for Stroke Prevention (VISP) Trial, moderate reductions 

in total homocysteine following vitamin therapy with folic acid, vitamin B6 and vitamin B12 

had no beneficial effect on vascular outcomes (180). Likewise, homocysteine lowering with 

supplemental folic acid, vitamin B6 and vitamin B12 had no impact on the risk of 

cardiovascular events in vascular disease patients enrolled in the Heart Outcomes Prevention 

Evaluation 2 (HOPE-2) Trial (170). Similar conclusions were reached by other large, 

randomized clinical trials [NORVIT (173), SEARCH (174), WENBIT (175), WAFACS (176), 

HOST (177)]. In contrast, a meta-analysis investigating the effect of B vitamin therapy on 

cerebrovascular risk reported reduced risk of overall stroke following homocysteine-lowering 

with B vitamin supplementation (125). A recent Cochrane review found that homocysteine-

lowering interventions (vitamins B6, B9 or B12 given alone or in combination) did not reduce 
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risk of myocardial infarction; however, homocysteine-lowering interventions were associated 

with a small but statistically significant reduction in stroke (181). 

There are several possible explanations for observed cardiovascular outcomes in 

clinical trials of homocysteine-lowering therapies. Many of the clinical trials recruited patients 

with existing cardiovascular disease as a form of secondary prevention; therefore, conclusions 

cannot be made regarding the efficacy of homocysteine-lowering therapy as a form of primary 

prevention. Additionally, cardiovascular disease comprises numerous conditions affecting the 

heart and blood vessels and, as such, response to treatment may differ depending on the clinical 

endpoint. Moreover, as posited by Bostom et. al., the presence of folic acid fortification may 

reduce the ability to detect differences between placebo and treatment groups (172). Factors 

such as medication use, duration of homocysteine-lowering therapy, and duration of follow-

up may also play a role. Indeed, additional analyses that focused solely on stroke outcomes 

from the HOPE-2 trial demonstrated a reduced risk of overall stroke in individuals receiving 

combined folic acid, vitamin B6 and vitamin B12 therapy (171). Subgroup analyses indicated 

a larger risk reduction in patients with baseline homocysteine concentrations in the highest 

quartile (> 13.8 µmol/L) and in patients residing in countries without folic acid fortification 

(171). In a meta-analysis by Wang et. al., primary prevention with folic acid supplementation 

significantly reduced risk of stroke (182) 

 

Dietary Whole Eggs  

 

Nutritional Value of Eggs 

It is widely recognized that eggs are a source of high quality protein and contain a high 

nutrient-to-energy density ratio. One large egg contains just 70 kcal, while providing nutrients 
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such as choline, riboflavin, folate, vitamin B12, vitamin A and vitamin D (Table 2-3) (183). 

Eggs are also a highly bioavailable source of the carotenoids lutein and zeaxanthin, 

antioxidants that may play a role in disease prevention (184). Additionally, eggs are readily 

available, affordable, easy to prepare, and thus play an important role in maintaining nutritional 

adequacy in groups such as the elderly, low-income families, and individuals restricting caloric 

intake. Song and Kerver reported that eggs contributed 20-30% of the RDA for vitamins A, E 

and B12 among egg consumers in the National Health and Nutritional Examination Survey III, 

whereas non-consumers were less likely to meet the RDA for these vitamins (185). Based on 

the National Health and Nutrition Examination Survey (NHANES) 2001-2008 24 h diet recall 

data, approximately 20% of the population report consuming eggs on a given day (186). 

Several studies estimate daily egg consumption of ~0.5 servings/d in the U.S. population (187–

189).  

Eggs are one of the best sources of dietary choline, providing 117 mg per large egg 

(Table 2-3) (190). Choline is an essential nutrient required for neurotransmitter synthesis, cell 

signaling, lipid transport and methyl group metabolism. Low choline status results in an 

inability to remethylate homocysteine via the folate-independent pathway catalyzed by BHMT 

and is associated with elevations in circulating homocysteine. Thus, maintaining adequate 

choline stores is important in preventing hyperhomocysteinemia and the associated 

cardiovascular risk. Choline can be obtained via dietary intake or de novo synthesis, although 

de novo synthesis alone is not sufficient to meet human needs (191). Endogenous biosynthesis 

of choline is catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT), resulting 

in the methylation of phosphatidylethanolamine to form phosphatidylcholine. Genetic 

polymorphisms, such as polymorphisms in the PEMT gene, affect demands for dietary choline, 
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resulting in significant variation in the dietary choline requirement (192). The recommended 

adequate intake (AI) for choline for adults is 425 mg/d for women, 450 mg/d for pregnant 

women, 550 mg/d for lactating women and 550 mg/d for men (191). Several studies 

demonstrate that the majority of the population is not meeting the recommended AI for choline 

(135,193,194), although others report sufficient intakes (195). Of note, the AI set for choline 

does not take into account genetic polymorphisms that increase dietary methyl group 

requirements, and it is estimated that up to 50% of the population may require choline intakes 

above the AI (196).  

Eggs are also a source of vitamin D, providing both vitamin D3 and 25(OH)D, as 

described previously (Table 2-3). Both vitamin D3 and 25(OH)D can be efficiently transferred 

from the hen’s feed to the egg yolk in a dose-dependent manner, making eggs a good candidate 

for biofortification (103). Indeed, studies have demonstrated that supplementation of hen feed 

with varying amounts of vitamin D3 and 25D results in a marked increase in the vitamin D3 

and 25(OH)D content of eggs (103). Additionally, eggs naturally contain a higher amount of 

25(OH)D than several other animal-based foods, and 25(OH)D is known to raise serum 

25(OH)D more readily than vitamin D3 (104,197). One whole, large egg (50 g) contains 

approximately 1.25 µg (50 IU) vitamin D3 and 0.325 µg (13 IU) 25(OH)D (104). Adjusting 

for 25(OH)D potency using a factor of 5, the whole eggs provide 1.625 µg (65 IU) of 25(OH)D. 

Therefore, when taking into account 25(OH)D potency, consumption of one large egg meets 

19% of the RDA for vitamin D (57,104). 
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Table 2-3: Nutritional Composition of Whole Eggsa 

Nutrient 1 large egg (50.0 g) Vitamin and 
Mineral % RDAb 

Energy (kcal) 72 $ 
Protein (g) 6.25 $ 
Total lipid (g) 4.74 $ 
Fatty acids, total saturated (g) 1.556 $ 
Fatty acids, total 
monounsaturated (g) 1.821 $ 

Fatty acids, total 
polyunsaturated (g) 0.952 $ 

Cholesterol (mg) 185 $ 
Calcium (mg) 28 3 
Iron (mg) 0.88 men 11 
 

 women 5 
Magnesium (mg) 6 2 
Phosphorus (mg) 98 17 
Zinc (mg) 0.65 7 
Riboflavin 0.194 16 
Vitamin B-6 (mg) 0.072 6 
Folate, DFEb (µg) 18 5 
Vitamin B-12 (µg) 0.35 15 
Vitamin A, RAEb (µg) 80 10 
Vitamin D (IU) 41 7 
Choline (mg) 117 23 

a Adapted from the United States Department of Agriculture National Nutrient Database (198). 

b DFE, dietary folate equivalent, RAE, retinol activity equivalent, RDA, recommended dietary 
allowance. 

 

Egg Consumption and Health 

Satiety 

It is well established that dietary protein is associated with increased measures of 

satiety, and increased intake of satiating foods may provide a means to limit energy intake and 

promote weight loss. One large egg contains 6.28 g of protein, meeting 12% of the daily value 
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based on a 2000 kcal diet (198). The protein digestibility-corrected amino acid score 

(PDCAAS) for eggs is 118, higher than that of many protein sources, including beef and soy 

with PDCAAS scores of 92 and 91, respectively (199). Numerous studies have demonstrated 

a satiating effect of dietary whole eggs or egg protein, in both rats and humans (200–203). 

Using a 3-way crossover design, Fallaize et al. demonstrated that consumption of an egg 

breakfast resulted in greater satiety in healthy men, as assessed by visual analog scales, 

compared to a cereal or croissant breakfast (204). Furthermore, the egg breakfast resulted in 

lower energy intake at lunch and dinner compared to the cereal and croissant breakfasts (204). 

In overweight and obese subjects fed a breakfast consisting of eggs or an isocaloric bagel 

breakfast, the egg breakfast resulted in higher satiety and reduced energy intake at lunch and 

in the next 36 hours (202). Additionally, Ratliff et al. reported that consumption of an egg 

breakfast resulted in a suppressed ghrelin response in healthy male and female subjects 

compared to an isocaloric bagel breakfast (203). Of note, Nielsen et al. demonstrated that 

measures of satiety and ab libitum energy intake did not differ between subjects fed 

macronutrient-balanced, isocaloric meals based in vegetable protein (fava beans and split 

peas), meat (veal and pork) or eggs, indicating that different protein sources have comparable 

effects on appetite (205).  

A limited number of studies have investigated the impact of habitual egg intake on 

body weight regulation. In an 8 week dietary intervention study, overweight and obese 

participants were assigned to an egg or bagel breakfast, with or without concomitant energy 

restriction (206). Consumption of the egg breakfast resulted in a greater reduction in BMI, 

waist circumference and body fat and a greater weight loss compared to the bagel breakfast in 

the groups assigned to energy-restricted diets, whereas no differences in body weight 
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parameters were observed between egg and bagel breakfasts in the non-energy-restricted 

groups (206). In obese Chinese adolescents assigned to an egg or steamed bread breakfast for 

3 months, consumption of an egg breakfast resulted in significant weight loss (207). In contrast, 

Pearce et al. and Fuller et al. did not observe differences in weight loss following 12 weeks 

and 21 weeks of energy restriction, respectively, between type 2 diabetic subjects fed high-egg 

or low-egg diets (208,209).  Likewise, Rueda and Kholsa found no differences in body weight 

regulation in university students assigned to a breakfast with or without eggs over a 14 week 

semester (210). It appears that the short-term satiating effect of eggs does not always translate 

into long-term weight loss, although research on this topic is limited and additional studies are 

needed. 

 

Cardiovascular Health 

The hypothesis that dietary cholesterol may contribute to cardiovascular disease risk 

was first proposed in the Framingham Heart Study, which provided evidence for a relationship 

between serum cholesterol and coronary heart disease (211,212). On average, daily cholesterol 

intake ranges from 200-350 mg/d in the U.S., depending on factors such as gender and age 

(213). Egg consumption contributes significantly to dietary cholesterol intake, with one large 

egg providing approximately 200 mg cholesterol (214,215). In 1968, the American Heart 

Association published recommendations to limit cholesterol consumption to <300 mg/d and to 

limit egg consumption to no more than 3 eggs/wk, based on the theory that reducing dietary 

cholesterol would result in reduced circulating cholesterol and a subsequent reduction in 

cardiovascular disease risk (216). However, scientific evidence for the recommended 

cholesterol restriction from studies using animal models often required pharmacological doses 

to elicit hypercholesterolemia, and epidemiological studies failed to account for confounding 
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factors, such as saturated fat intake (217). A number of epidemiological studies report that 

dietary cholesterol is no longer associated with coronary heart disease when dietary fiber and 

saturated fat are included in the analysis (218–221). For example, in the Seven Countries 

Study, the correlation between cholesterol intake and coronary heart disease mortality became 

insignificant after adjusting for saturated fat (221,222). Furthermore, research demonstrating 

that human subjects could compensate for an increase in cholesterol intake by decreasing 

cholesterol absorption and/or endogenous cholesterol synthesis and by increasing bile acid 

excretion cast doubt on the recommendation to limit egg consumption (223–225). In the 

following years, numerous studies investigated the effect of dietary cholesterol on plasma 

cholesterol concentrations and cardiovascular risk. Today, an extensive body of research 

indicates that dietary cholesterol does not significantly contribute to cardiovascular disease 

risk. In light of these findings, the Dietary Guidelines for Americans did not include a 

recommendation to limit dietary cholesterol consumption in the 2015 edition (69). However, 

recent findings using pooled data from 6 prospective cohort studies in the U.S., with a mean 

follow-up of 17.5 years, have challenged this recommendation (226). The study found that, for 

each additional 300 mg of cholesterol or half egg consumed, there was an increased risk of 

incident cardiovascular disease and all-cause mortality (226).  

Meta-analyses have demonstrated that increased cholesterol intake is associated with 

marginal increases in plasma cholesterol (227). Howell et al. reported a change of 2.2 mg/dL 

in plasma cholesterol per 100 mg/d change in dietary cholesterol (228). However, the increase 

in plasma total cholesterol is concomitant with increases in both low-density lipoprotein (LDL) 

cholesterol and high-density lipoprotein (HDL) cholesterol. As a result, the LDL:HDL ratio, a 

major determinant of cardiovascular disease risk, remains unchanged or only minimally altered 
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(227). It is important to note that there is considerable heterogeneity in the response to dietary 

cholesterol in humans (223). Circulating cholesterol concentrations are influenced by 

cholesterol absorption, endogenous cholesterol synthesis, and rates of bile acid synthesis and 

excretion (229). In a study quantifying cholesterol absorption in men and women using duel 

stable isotopic tracers, cholesterol absorption ranged from 29-80%, with a mean absorption of 

56% (230). The majority of human subjects compensate for increased cholesterol intake by 

effective feedback control mechanisms. These individuals are classified as “hypo-responders” 

to dietary cholesterol, as increased intake does not significantly increase circulating cholesterol 

concentrations (227). In contrast, individuals who experience significant changes in plasma 

cholesterol in response to cholesterol intake are classified as “hyper-responders” (227). 

McNamara et al. examined individual responses to low (~250 mg/d) and high (~800 mg/d) 

cholesterol diets and found a 26% reduction in endogenous cholesterol synthesis as well as 

reduced cholesterol absorption in subjects whose plasma cholesterol remained unchanged in 

response to high dietary cholesterol intake (223). Likewise, Bruno et al. reported that an intake 

of 3 eggs/d for a period of 4 wk downregulated cholesterol synthesis while maintaining the 

LDL:HDL ratio (231). In pre-menopausal women, additional dietary cholesterol provided by 

eggs resulted in no changes in LDL cholesterol or HDL cholesterol in hypo-responders, 

whereas both LDL and HDL cholesterol were increased in hyper-responders (232). 

Importantly, the LDL:HDL ratio remained unchanged in both groups (232). Other studies have 

also reported no change or minimal changes to the LDL:HDL ratio following a period of egg 

consumption (233,234). The finding that dietary cholesterol has little impact on the LDL:HDL 

ratio may help explain why cholesterol consumption has little impact on cardiovascular disease 

risk.   
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Studies regarding the relation between egg consumption and cardiovascular disease 

have focused largely on the cholesterol content of eggs; however, eggs have recently received 

attention for their phosphatidylcholine and choline content as well. It has been suggested that 

dietary choline may potentially elicit negative health effects through production of 

trimethylamine-N oxide (TMAO), a metabolite that has emerged as a potential predictor of 

cardiovascular risk (235). TMAO can be found in the diet in the preformed state, or it can be 

produced by the liver following the metabolism of its precursors, choline and carnitine, by the 

intestinal microbiota (235). Findings by Tang et al. and Miller et al. demonstrate that 

consumption of 2 or more eggs increases plasma concentrations of TMAO (236,237). In 

contrast, DiMarco et al. reported no changes in plasma TMAO following intake of 2-3 eggs/d 

for 4 wk (238). Circulating concentrations of TMAO were shown to predict cardiovascular 

disease risk in cardiac patients (236) and were predictive of myocardial infarction and stroke 

(236). Similarly, serum TMAO concentrations were associated with the number of infarcted 

coronary arteries in patients undergoing cardiovascular surgery (239). It remains to be 

determined whether TMAO plays a causative role in cardiovascular disease progression, or is 

simply a marker of cardiovascular pathology. It is important to note that fish is a food naturally 

high in TMAO, and fish consumption is associated with reduced cardiovascular risk (240). 

Furthermore, dietary choline intake is associated with several health benefits, and foods 

containing TMAO precursors provide many important nutrients (54). Thus, further studies are 

warranted before any conclusions regarding diet, TMAO and cardiovascular risk can be made.  

To date, the majority of scientific evidence documents no effect of egg consumption 

on cardiovascular disease risk. Hu et al. reported no difference in the relative risk of coronary 

heart disease in participants consuming less than 1 egg/wk compared to participants consuming 
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# 1 egg/d (241). In a prospective study of healthy, middle-aged men, no associations between 

egg consumption and incidence of cardiovascular disease, stroke, or myocardial infarction 

were identified (242). Likewise, consumption of up to 1 egg/d was not associated with 

cardiovascular mortality in a Mediterranean population (243). In a large Chinese cohort, 

moderate egg consumption was associated with reduced cardiovascular risk (244). A meta-

analysis conducted by Alexander et al. found that daily egg intake is not associated with 

coronary heart disease risk, and may be associated with a reduction in stroke risk (245). 

Similarly, consumption of 1 egg/d did not increase risk of cardiovascular disease in the 

Guangzhou Biobank Cohort Study, and was associated with a reduced risk of stroke (246). 

Lastly, a dose response meta-analysis of prospective cohort studies did not find any link 

between daily egg consumption and risk of coronary heart disease or stroke (247). However, 

as mentioned previously, a recent analysis of pooled data from 6 prospective U.S. cohorts 

reported a significant, dose-dependent association between egg consumption and 

cardiovascular disease risk (226). Thus, the associations between consumption and heart health 

remain controversial and likely depend on an individual’s lifestyle and genetics, as well as the 

presence of cardiovascular risk factors.   

 

Type 2 Diabetes 

The relation between egg consumption and health outcomes in type 2 diabetics and 

individuals at risk for T2D is unclear and requires further assessment. Although some studies 

suggest that egg consumption may increase T2D risk, others find no association or a beneficial 

impact on T2D risk factors (248–252). There does appear to be an association between egg 

consumption and cardiovascular comorbidity in the diabetic population (245,247,253), 
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although this association has not been observed in all studies (254,255). In a meta-analysis of 

prospective cohort studies, diabetics consuming >1 egg/d had a hazard ratio of 1.69 for overall 

cardiovascular disease risk compared to diabetics consuming <1 egg/wk (253). However, Tran 

et al. caution against drawing broad conclusions regarding the role of egg consumption in 

cardiovascular disease risk among diabetics, stating that shared risk factors between 

cardiovascular disease and type 2 diabetes make it extremely difficult to interpret results from 

epidemiological studies examining this complex relationship (255). Notably, a number of 

studies have demonstrated that dietary cholesterol is poorly absorbed in obese and insulin 

resistant individuals (256,257), suggesting that any potential relationship between egg intake 

and cardiovascular disease risk among diabetics may not be related to the cholesterol content 

of eggs. Furthermore, numerous prospective studies examining egg consumption in insulin 

resistant and type 2 diabetic individuals report favorable cardiometabolic outcomes, or no 

adverse effects (208,209,258–261). For example, Pearce et al. reported reduced total 

cholesterol, non-HDL cholesterol and triglycerides in type 2 diabetic and glucose intolerant 

individuals consuming an energy-restricted, high-protein diet containing 2 eggs/d (208). 

Likewise, Blesso et al. found that consumption of 3 eggs/d for 12 wk improved lipoprotein 

profiles in individuals with metabolic syndrome (258). Of note, many of the studies reporting 

favorable metabolic outcomes combined egg consumption with carbohydrate or energy 

restriction.  
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CHAPTER 3.   !DIETARY WHOLE EGG CONSUMPTION ATTENUATES BODY 
WEIGHT GAIN AND IS MORE EFFECTIVE THAN SUPPLMENTAL 

CHOLECALCIFEROL IN MAINTAINING VITAMIN D BALANCE IN TYPE 2 
DIABETIC RATS 

Saande C.J*., Jones S.K*., Hahn K.E., Reed C.H., Rowling M.J., Schalinske K.L., Dietary 

whole egg attenuates body weight gain and is more effective than supplemental 

cholecalciferol in maintaining vitamin D balance in type 2 diabetes. J Nutr 2017, 147: 9, 

1715-21, reprinted by permission of Oxford University Press. 

*CJS and SKJ contributed equally to this work. 
 

Abstract 

Background: Type 2 diabetes (T2D) is characterized by vitamin D insufficiency owing to 

excessive urinary loss of 25-hydroxycholecalciferol (25(OH)D). We previously reported that 

a diet containing dried whole egg, a rich source of vitamin D, was effective at maintaining 

circulating 25(OH)D concentrations in T2D rats. Furthermore, whole egg consumption 

reduced body weight gain in T2D rats.  

Objective: This study was conducted to compare whole egg consumption to supplemental 

cholecalciferol with respect to vitamin D balance, weight gain, and body composition in T2D 

rats.  

Methods: Male Zucker diabetic fatty (ZDF) rats (n= 24) and their lean controls (n=24) were 

obtained at 5 wk of age and randomly assigned to 3 treatment groups: a casein-based diet 

(CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental 

cholecalciferol (CAS+D) at the same level of cholecalciferol provided by the dried whole egg-

based diet (37.6 µg/kg diet). Rats were fed their respective diets for 8 wk. Weight gain and 
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food intake were measured daily, circulating 25(OH)D concentrations were measured by 

ELISA, and body composition was analyzed by dual X-ray absorptiometry.  

Results: Weight gain and percent body fat were reduced by approximately 20% and 11%, 

respectively, in ZDF rats fed WE compared to ZDF rats fed CAS or CAS+D. ZDF rats fed 

CAS had 21% lower serum 25(OH)D concentrations than lean rats fed CAS. In ZDF rats, WE 

consumption increased serum 25(OH)D concentrations 130% compared to CAS, whereas 

consumption of CAS+D increased serum 25(OH)D concentrations 35% compared to CAS.  

Conclusion: Our data suggest that dietary consumption of whole egg is more effective than 

supplemental cholecalciferol in maintaining circulating 25(OH)D concentrations in T2D rats. 

Moreover, whole egg consumption attenuated weight gain and reduced percent body fat in 

ZDF rats. These data may support new dietary recommendations targeting prevention of 

vitamin D insufficiency in T2D. 

 

Introduction  

Although vitamin D insufficiency is common globally, it is highly predominate in type 

2 diabetes (T2D), affecting 70-90% of the T2D population (1-3). Vitamin D insufficiency is 

defined as circulating 25-hydroxycholecalciferol (25(OH)D) concentrations between 30-50 

nmol/L (12-20 ng/mL), whereas deficiency is defined as serum 25(OH)D concentrations below 

30 nmol/L (12 ng/mL). Evidence from prospective studies suggests a correlation between 

inadequate vitamin D concentrations and T2D (4-6). Specifically, vitamin D deficiency may 

be a factor in the development of insulin resistance as well as the pathogenesis of T2D by 

affecting either insulin sensitivity, β-cell function or both (7-9); however, other studies have 

found little or no association between T2D and these measures (10, 11). Furthermore, we have 

found that diabetic nephropathy, a well-characterized complication of T2D, leads to excessive 
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urinary excretion of circulating 25(OH)D and vitamin D binding protein (DBP), thereby 

exacerbating vitamin D deficiency (12-14). Therefore, there is a critical need to identify dietary 

intervention strategies to prevent and/or treat vitamin D deficiency in the diabetic population.  

Dietary vitamin D exists in two forms, ergocalciferol (vitamin D2) and cholecalciferol 

(vitamin D3). The most abundant dietary form is cholecalciferol, which is metabolized in the 

liver to 25(OH)D by humans and animals; therefore, animal-based foods are a source of 

25(OH)D as well as cholecalciferol. The precursor form of active vitamin D is 25(OH)D, 

which, in the circulation, reflects an individual’s vitamin D status. Vitamin D 

recommendations for diabetics are inconsistent. Randomized clinical trials focusing on T2D 

outcomes vary with respect to vitamin D dose and regimen, ranging from 1000-6000 IU/ d to 

20,000-40,000 IU /wk with study durations lasting from several months to years. Results from 

these studies differ with respect to improvements in fasting blood glucose, glycated 

hemoglobin (HbA1c), and insulin sensitivity (15-19). While the current RDA for vitamin D in 

adults is 600 IU/ d, supplementation guidelines remain an intense topic of debate. Although an 

intake of 600 IU/d is sufficient to support musculoskeletal health, more studies are needed to 

clearly assess the impact of supplementary cholecalciferol on chronic diseases (20). As 

reviewed by Mathieu (21), growing evidence supports the adoption of the international 

guidelines on supplementation of cholecalciferol at 500-1000 IU/d to prevent vitamin D 

deficiency and reduce the risk of T2D onset.  

Treatment of T2D is primarily focused on lifestyle modifications, including 

improvements in diet and physical activity, to promote weight loss and improve blood glucose 

control. We have previously shown that dietary resistant starch was an effective dietary 

strategy for maintaining vitamin D balance by protecting renal health, thereby preventing 
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urinary excretion of 25(OH)D and DBP. In contrast, the present study utilized dried whole 

eggs to focus on increasing dietary consumption of vitamin D as a means to improve vitamin 

D status. Whole eggs are an excellent source of vitamin D, in the form of both 25(OH)D and 

cholecalciferol, which is found exclusively in the yolk (22). Promoting egg consumption has 

been a controversial diet recommendation for individuals with T2D because of the rich 

cholesterol content of eggs. Because diabetics are at an increased risk for cardiovascular 

disease (CVD), they have been encouraged to limit the number of eggs they consume. To date, 

there are a number of studies that contradict the relation between egg consumption and chronic 

disease (23-27). More importantly, recent revisions to the Dietary Guidelines for Americans 

no longer include recommendations to limit intake of dietary cholesterol, a decision based on 

the growing body of research showing that dietary cholesterol intake has little effect on serum 

cholesterol concentrations and subsequent health risks (28). Furthermore, numerous human 

studies report that egg consumption is associated with increased satiety, which leads to reduced 

overall caloric intake (29-33). Some human studies also report that egg consumption promotes 

weight loss; however, the literature regarding the effect of egg consumption on body weight 

management remains inconsistent (34, 35). Nevertheless, a growing body of research 

demonstrates several benefits of whole egg consumption, such as the high nutrient content and 

satiating effect of whole eggs; thus, dietary whole egg consumption may be beneficial in the 

diabetic population (36-38).   

We previously reported that a dried whole egg-containing diet is a highly effective 

strategy to maintain circulating 25(OH)D concentrations in T2D rats (39). Additionally, whole 

egg consumption reduced weight gain in diabetic rats. Thus, the primary objectives of this 

follow-up study were 1) to compare the vitamin D provided by whole eggs to a diet 
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supplemented with cholecalciferol in maintaining serum vitamin D balance and 2) to further 

investigate the effect of whole egg consumption on weight gain and body composition in T2D 

rats. 

 

Materials and Methods 

Animals and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University and were performed according to the Iowa State 

University Laboratory Animal Resources Guidelines. Male Zucker diabetic fatty (ZDF; fa/fa) 

rats (n= 24) and lean (fa/+) control rats (n= 24) were purchased at 5 wk of age (Charles River 

Laboratories). Rats were housed individually in plastic cages in a temperature-controlled room 

with a 12-h light-dark cycle. All diets were formulated and pelleted by Research Diets, Inc. 

Dried whole egg was purchased from Rose Acre Farms and sent to Research Diets, Inc. for 

diet formulation. All rats were acclimated to a semi-purified diet (AIN-93G) for 1 wk. Rats 

were randomly assigned to 1 of 3 experimental diets (Table 3-1): a casein-based diet (CAS), a 

dried whole egg-based diet (WE), or a casein-based diet containing supplemental 

cholecalciferol (CAS+D) provided at the same level of cholecalciferol supplied by the WE diet 

(37.6 µg/kg diet). Vitamin mix in all diets provided 25 µg vitamin D/kg diet. The whole egg 

diet contained an additional 12.6 µg cholecalciferol/kg diet, thus, the WE diet provided a total 

of 37.6 µg cholecalciferol/kg diet. This level was matched in the CAS+D diet with the addition 

of 12.6 µg cholecalciferol.  All diets provided protein at 20% (w/w) and were matched for lipid 

content (18.3%) via the addition of corn oil to the CAS and CAS+D diets, accounting for the 

additional lipid provided by the dried whole egg. Rats were given ad libitum access to food 

and water for 8 wk. Food intake was recorded daily for each rat beginning at wk 3 of the study. 

Pelleted diets were weighed and distributed daily. Consumption was defined as the difference 
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in pellet weight within a 24 h period. Prior to sacrifice, rats were placed in metabolic cages for 

12 h, during which urine was collected and then stored at -80˚ C for subsequent analysis. Rats 

were anesthetized via a single intraperitoneal injection of ketamine:xylaxine (90:10 mg/kg 

body weight). Whole blood was collected via cardiac puncture and blood glucose was 

measured using a glucometer (Bayer Healthcare). Body fat, lean body mass, bone mineral 

density and bone mineral content were measured post-necropsy using dual energy x-ray 

absorptiometry (DEXA). 

 

Biochemical Analysis. Analysis of serum and urinary creatinine was measured using 

commercially available colorimetric kits (Cayman Chemical). Urinary total protein 

concentrations were measured using a bicinchoninic acid assay (Thermo Scientific Pierce), 

serum concentrations of 25(OH)D were analyzed using a commercial enzyme immunoassay 

kit (Immunodiagnostic Systems), and urinary concentrations of 25(OH)D and DBP were also 

analyzed using a commercial enzyme immunoassay kit (Immunodiagnostic Systems and Life 

Diagnostics, respectively) as previously described (12, 13, 40). Authenticity of all kits for use 

on rodent biological samples has been verified by the manufacturer.  

 

Statistical Analysis. All data were analyzed using SigmaPlot 9.0 (Systat Software Inc.). Mean 

values were evaluated for statistically significant differences (P < 0.05) using a two-way 

ANOVA (genotype x diet) followed by the Fisher’s Least Significant Difference (LSD) post 

hoc test for multiple comparisons. Nonparametric analysis was utilized when normality failed 

or variances were unequal using a Kruskal-Wallis one-way ANOVA on Ranks. 
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Results 

Whole egg consumption reduced total body weight and cumulative weight gain despite 

increased food intake in ZDF rats. Lean and ZDF rats initially gained the same amount of 

weight across all dietary groups within a given genotype. As expected, ZDF rats fed the CAS 

and CAS+D diets gained more weight throughout the study compared to all lean control rats 

(Figure 3-1A). However, ZDF rats fed WE exhibited a plateau in cumulative weight gain 

beginning on d 10 and an approximate 20% reduction in weight gain compared to ZDF rats 

fed CAS and CAS+D after 8 wk of dietary treatment. Furthermore, cumulative weight gain in 

ZDF rats fed WE was statistically equivalent to all lean control rats beginning on d 22, and for 

the remainder of the study. Although ZDF rats fed WE gained less weight than ZDF rats fed 

CAS and CAS+D, total food intake in ZDF rats fed WE was approximately 7% higher 

compared to ZDF rats fed CAS and CAS+D (Table 3-2). Beginning at wk 5, ZDF rats fed WE 

had higher weekly food intake per 100 g body weight compared to ZDF rats fed CAS and 

CAS+D, whereas weekly food intake (g/100 g body weight) did not differ in lean rats 

regardless of diet (Figure 3-1B). Moreover, cumulative weight gain and total food intake did 

not differ between the lean control rats fed either CAS, CAS+D or WE. There were no 

differences in the food efficiency ratio within the ZDF genotype. In contrast, the food 

efficiency ratio [(weight gain, g/food intake, g) x 100].) was 12% lower in lean rats fed WE 

compared to lean rats fed CAS (Table 3-2).  

 

ZDF rats fed WE exhibited a lower body fat percentage than ZDF rats fed CAS and CAS+D. 

Percent body fat and percent lean body mass are presented in Figure 3-2. Percent body fat did 

not differ between dietary groups within lean control rats. In contrast, WE consumption in ZDF 

rats reduced body fat percentage by 8 and 13%, respectively, compared to ZDF rats fed CAS 
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and CAS+D. Lean body mass was increased by 11% in ZDF rats fed WE compared to ZDF 

rats fed CAS+D, whereas lean body mass did not differ, regardless of diet, within the lean rats. 

Bone mineral density did not differ across all dietary groups and genotypes (Table 3-2). Bone 

mineral content, expressed as a percentage of body weight, did not differ between dietary 

groups within the lean control rats. Because bone mineral content was corrected for body 

weight, bone mineral content was 7 and 9% higher, respectively, in WE-fed ZDF rats than in 

ZDF rats consuming CAS or CAS+D.  

 

The WE diet elevated circulating 25(OH)D concentrations to a greater extent than the 

CAS+D diet. Serum 25(OH)D concentrations of all treatment groups are shown in Figure 3-3. 

As expected, ZDF rats fed CAS had lower (21%) serum 25(OH)D concentrations than their 

lean counterparts fed CAS. The WE diet increased 25(OH)D concentrations by 130% 

compared to ZDF rats fed CAS, whereas CAS+D increased circulating 25(OH)D by only 35% 

compared to ZDF rats fed CAS. Likewise, serum 25(OH)D concentrations of lean rats fed 

CAS+D and the WE diet were increased by 19% and 113%, respectively, compared to lean 

rats fed CAS. When compared to CAS+D, WE increased serum 25(OH)D concentrations by 

80% and 70% in lean and ZDF rats, respectively.  

 

Serum and urinary biochemical measurements. The presence of hyperglycemia in ZDF rats 

confirmed the diabetic state; however, blood glucose did not differ between dietary groups 

within the lean or ZDF genotype.  In lean rats fed WE, serum insulin was lower than all other 

dietary groups. The homeostatic model assessment of insulin resistance (HOMA-IR) was 

decreased by 80 and 71%, respectively, in lean rats fed WE compared to lean rats fed CAS and 



www.manaraa.com

68 

CAS+D. HOMA-IR values did not differ between dietary groups within the ZDF genotype. 

Urinary output, urinary 25(OH)D, urinary DBP and serum creatinine were increased in ZDF 

rats compared to lean rats. Urinary creatinine excretion was reduced in ZDF rats fed CAS and 

CAS+D by approximately 67% and 79%, respectively, compared to all lean rats. In contrast, 

urinary creatinine excretion did not differ in ZDF rats fed the WE diet compared to all lean 

rats. Urinary total protein excretion did not differ between lean and ZDF rats. WE consumption 

was without effect on urinary measures within the lean or ZDF genotype. Likewise, there were 

no differences in serum creatinine within lean or ZDF rats (Table 3-3). 

 

Discussion 

We have previously shown that a dried whole egg-based diet is a highly effective 

strategy for maintaining serum 25(OH)D concentrations in rats with T2D (39). The present 

study demonstrates that vitamin D derived from whole egg may be more effective than an 

equivalent amount of supplemental cholecalciferol added to a casein-based diet at maintaining 

serum 25(OH)D concentrations. Serum 25(OH)D concentrations were markedly higher in both 

lean and ZDF rats fed WE compared to rats fed CAS+D. Consumption of the WE diet in ZDF 

rats resulted in elevated serum 25(OH)D despite urinary losses due to the presence of diabetic 

nephropathy. All ZDF rats exhibited excessive urinary excretion of 25(OH)D regardless of 

dietary group, which suggests that the increase in serum 25(OH)D in ZDF rats fed the WE diet 

was due to a mechanism other than attenuated urinary losses. The difference in serum 25(OH)D 

concentrations between the WE and CAS+D diets may be due to the potency of 25(OH)D 

contained within whole eggs. In support of this theory, Cashman et al. carried out a human 

study comparing orally supplemented 25(OH)D to cholecalciferol and found that oral 

supplementation with 25(OH)D raised serum 25(OH)D concentrations five times more than an 
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oral cholecalciferol supplement per microgram consumed (41). As reviewed by Ovesen et al., 

a number of studies have reported 25(OH)D to be more potent than the equivalent amount of 

cholecalciferol in raising serum concentrations of 25(OH)D, however, the exact potency factor 

remains undetermined (42).  

Nutritionally, eggs boast a number of benefits; they are rich in high quality protein, 

contributing to satiety; contain a high nutrient-to-energy density ratio, and are inexpensive and 

easy to prepare (24, 43). Furthermore, egg consumption has been shown to increase circulating 

HDL-cholesterol concentrations, which is associated with lower CVD risk (44-46). Despite 

these advantages, there remains a negative perception toward egg consumption for individuals 

with diabetes.  Previous studies have suggested that high egg consumption may be associated 

with higher CVD outcomes in people with T2D, a population already at risk for CVD (47-49); 

however, more recent studies contradict this finding. A randomized control trial found that 

consuming 2 eggs per d for 3 mo did not negatively affect the lipid profile of diabetics (23).  A 

similar study reported that egg consumption, in combination with healthy dietary changes, 

improved glucose homeostasis, as well as lipid profiles in a diabetic population (45). 

Furthermore, the 2015 Dietary Guidelines for Americans no longer include recommendations 

to limit intake of dietary cholesterol as a direct result of the decades of research demonstrating 

little effect of dietary cholesterol on serum cholesterol concentrations and subsequent health 

risks (50). Taken together, egg consumption, as a source of vitamin D, represents a reliable 

dietary intervention strategy for maintaining serum 25(OH)D concentrations in diabetics 

without posing additional heart health risks.  

We previously reported that whole egg consumption attenuated weight gain in ZDF 

rats fed a dried whole egg-based diet compared to ZDF rats fed a casein-based diet (39). In the 
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present study, ZDF rats fed WE exhibited a marked reduction in cumulative body weight gain 

compared to ZDF rats fed CAS and CAS+D. Furthermore, cumulative body weight gain in 

ZDF rats fed WE was the same as all lean control rats; thus, the reduction in cumulative body 

weight gain by WE is genotype specific, only occurring in the obese, diabetic state. The 

observed decrease in body weight in ZDF rats fed WE was, in part, due to a decrease in body 

fat percentage compared to ZDF rats fed CAS and CAS+D. In our recent unpublished 

observations using a diet-induced model of obesity in Sprague Dawley rats, cumulative weight 

gain was decreased by 23% in diet-induced obese rats fed a dried whole egg-based diet 

compared to diet-induced obese rats fed a casein-based diet. Moreover, diet-induced obese rats 

fed the dried whole egg-based diet gained the same amount of weight as control rats fed casein- 

and dried whole egg-based diets. These findings support the concept that whole egg 

consumption reduces weight gain in an obese state in both genetic and diet-induced models, 

whereas whole egg consumption is without effect on body weight in a lean phenotype. Previous 

studies have attributed differences in body weight following a whole egg-based diet to 

increased satiety, while others have found no difference in food intake (29-33). However, in 

the present study, we report an increase in food intake in ZDF rats fed WE, suggesting that the 

reduction in body weight in the ZDF genotype is likely the result of a mechanism other than 

satiety. Furthermore, we found no difference in the food efficiency ratio in ZDF rats within 

any of the dietary groups. Others have suggested dietary fat as a potential mechanism and there 

is evidence to support that dietary fat composition may influence final body weight or weight 

gain in an obese state, depending on the ratio of unsaturated to saturated fatty acids (51, 52). 

Other potential mechanisms include changes in thermogenesis or energy expenditure and 

alterations in the gut microbiome. Several rodent and human studies have found an association 
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between obesity and modifications to the intestinal microbiota; thus, it is possible that a 

component of the WE diet interacts with the intestinal microbiota in an obese state only (53, 

54). Further studies are needed to elucidate the mechanism by which whole egg consumption 

attenuates weight gain in both the genotype- and diet-induced obese phenotype.  

In conclusion, the present study demonstrates that dietary consumption of whole egg 

may be more effective than supplemental cholecalciferol in maintaining normal circulating 

25(OH)D concentrations in T2D. Furthermore, whole egg consumption results in reduced body 

weight gain in obese, type 2 diabetic rats. Future dose response studies are required to identify 

the minimal amount of dietary whole egg required to maintain vitamin D homeostasis and 

attenuate body weight gain in obesity and T2D. Our findings support the concept that inclusion 

of whole eggs in the diet is an important recommendation for maintenance of vitamin D 

balance in T2D. 
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Tables and Figures 

 

Figure 3-1: Cumulative body weight gain (A) and food intake (B) in lean control and Zucker 
diabetic fatty (ZDF) rats fed a casein-based (CAS), whole egg-based (WE), or casein-based 
diet including supplemental cholecalciferol (CAS+D) for 8 wk. Data are mean values ± SEMs; 
n = 8. Values without a common letter differ (P < 0.05). (B) For clarity, P values reported are 
for wk 8.  G; genotype, D; diet, G x D; genotype x diet (interaction).   
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Figure 3-2: Percent body fat and lean body mass of lean control and Zucker diabetic fatty 
(ZDF) rats following 8 wk dietary treatment with a casein-based (CAS), whole egg-based 
(WE), or casein-based diet including supplemental cholecalciferol (CAS+D). Data are means 
± SEMs; n = 8. Bars without a common letter differ (P < 0.05). Capital letters indicate 
differences in lean body mass and lower case letters indicate differences in percent body fat. 
An asterisk denotes a difference in lean body mass between ZDF rats fed WE and ZDF rats 
fed CAS+D when analyzed by a one-way ANOVA within the ZDF genotype. G; genotype, D; 
diet, G x D; genotype x diet (interaction).  
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Figure 3-3: Circulating 25-hydroxycholecalciferol (25(OH)D) concentrations of lean control 
and Zucker diabetic fatty (ZDF) rats following 8 wk dietary treatment with a casein-based 
(CAS), whole egg-based (WE), or casein-based diet including supplemental cholecalciferol 
(CAS+D). Data are means ± SEMs; n = 8. Bars without a common letter differ (P < 0.05). G; 
genotype, D; diet, G x D; genotype x diet (interaction). 
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Table 3-1 Composition of the casein-based diet (CAS), casein-based diet including 
supplemental cholecalciferol (CAS+D) and whole egg-based diet (WE)  fed to lean control and 
Zucker diabetic fatty rats for 8 wk1. 

Ingredient CAS CAS+D WE 
     g/kg 

Casein (vitamin-free) 200 200 0 

Dried standard whole egg, Type 350 2,3,4 0 0 435 

Cornstarch 417 417 365 

Glucose monohydrate 150 150 150 

Mineral Mix (AIN 93) 35 35 35 

Vitamin Mix (AIN 93) 10 10 10 

Cholecalciferol, 100,000 IU/g 0 0.00504 0 

Biotin, 1% 0 0 0.4 

Corn oil 183 183 0 

Choline bitartrate 2 2 2 

L-Methionine  3 3 3 

1All diets were formulated by and purchased from Research Diets Inc.  

2 Whole egg was purchased from Rose Acre Farms and sent to Research Diets Inc. for diet 
formulation. 

3 Total protein and lipid content provided by 435 g of whole egg were 46% (200 g) and 42% 
(183 g), respectively.  

4 Total cholecalciferol provided by the casein-based diet, casein-based diet including 
supplemental cholecalciferol and whole egg-based diet were 25, 37.6 and 37.6 µg/kg diet, 
respectively. 
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Table 3-2 Final body weight, total food intake, bone mineral density, bone mineral content, and food efficiency ratio of lean control and 
Zucker diabetic fatty rats (ZDF) fed a casein-based diet (CAS), a casein-based diet including supplemental cholecalciferol (CAS+D) 
and a whole egg-based diet (WE) for 8 wk1. 

  Lean   ZDF   P  

 CAS CAS+D WE CAS CAS+D WE Genoty
pe Diet Genotype 

x Diet 
Final Body Weight (g) 351 ± 5c 338 ± 11c 322 ± 19c 425 ± 5a 419 ± 5a 383 ± 5b <0.001 0.003 0.62 

Total Food Intake (g) 419 ± 6c 430 ± 13c 400 ± 9c 748 ± 14b 751 ± 21b 803 ± 
12a <0.001 0.419 0.006 

Bone Mineral Density (g/cm2) 0.20 ± 0.003 0.19 ± 0.004 0.19 ± 0.005 0.19 ± 0.003 0.18 ± 
0.003 

0.19 ± 
0.007 0.188 0.057 0.188 

Bone Mineral Content (% BWT) 2.59 ± 0.03a 2.65 ± 0.03a 2.68 ± 0.03a 2.15 ± 0.05c 2.11± 0.03c 2.29 ± 
0.02b <0.001 0.002 0.089 

Food Efficiency Ratio 25 ± 0.5a 24 ± 0.9a 22 ± 0.7b 10 ± 0.4c 11 ± 0.9c 9 ± 0.6c 0.037 <0.001 0.715 

 

1 Data are means ± SEMs; n=8. Mean values within a row without a common letter are statistically significant (P < 0.05).  
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Table 3-3 Biochemical measurements of lean control and Zucker diabetic fatty (ZDF) rats fed a casein-based diet (CAS), a casein-based 
diet including supplemental cholecalciferol (CAS+D) and a whole egg-based diet (WE) for 8 wk1. 

 

  Lean   ZDF   P  

 CAS CAS+D WE CAS CAS+D WE Genotype Diet Genotype 
x Diet 

Urinary Output (mL) 8.7 ± 3.6b 6.8 ± 1.5b 3.1 ±"1.0b 14.6 ± 1.5a 12.9 ± 1.8a 19.9 ± 
4.0a <0.001 0.71 0.043 

Urinary Total Protein (mg/ 12 h) 29"± 3 48 ± 13 53 ± 5 38 ± 4 32 ± 6 37 ± 7 0.189 0.29 0.12 

Urinary Creatinine (mg/12 h) 3.3! ± 0.3a 3.8 ± 0.5a 2.8 ± 0.5a 1.1 ± 0.2b 0.7 ± 0.1b 1.6 ± 
0.4ab <0.001 0.991 0.029 

Serum Creatinine (mg/dL) 2 ± 0.3b 2 ± 0.3b 2 ± 0.2b 17 ± 4a 21 ± 7a 21 ± 6a <0.001 0.968 0.929 
Urinary 25(OH)D 

(pmol/mg creatinine) 66 ± 15.9b 64 ± 21.1b 46 ± 7.6b 1610 ± 691a 1700 ± 654a 1990 ± 
1070a <0.001 0.95 0.938 

Urinary DBP (µg/12 h) 0.910 ± 0.19b 0.983 ± 0.28b 1.01 ±0.17b 993 ± 213a 749 ± 253a 1270 ± 
443a <0.001 0.523 0.523 

Blood glucose (mg/dL) 256 ± 21b 291 ± 17b 284 ± 24b 688 ± 41a 560 ± 67a 693"± 
43a <0.001 0.261 0.093 

Serum Insulin (ng/mL) 3.8 ± 0.7a 2.3 ± 0.2a 0.8 ± 0.4b 2.9 ± 0.4a 3.7 ± 0.4a 2.5 ± 
0.7a 0.082 0.004 0.018 

HOMA-IR (%) 54 ± 9ab 38 ± 4b 11"± 13c 113 ± 21a 117 ± 21a 99 ± 
29a <0.001 0.161 0.647 

 

1 Data are means ± SEMs; n = 8. Mean values within a row without a common letter are statistically significant (P < 0.05). 
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CHAPTER 4.   !DIETARY WHOLE EGG REDUCES BODY WEIGHT GAIN IN A 
DOSE-DEPENDENT MANNER IN ZUCKER DIABETIC FATTY RATS 

A manuscript accepted for publication in the Journal of Nutrition. 

Cassondra J. Saande, Joseph L. Webb, Paige E. Curry, Matthew J. Rowling and 

Kevin L. Schalinske 

 

Abstract 

Background: We previously reported that a whole egg-based diet attenuated weight gain in 

type 2 diabetic (T2D) rats and more effectively maintained vitamin D status than an equivalent 

amount of supplemental cholecalciferol.  

Objective: The objective of this study was to determine the lowest dose of whole egg effective 

at maintaining vitamin D homeostasis and attenuating the obese phenotype in T2D rats. 

Methods: Zucker diabetic fatty (ZDF) rats (n= 40; 6 wk of age; prediabetes) and their lean 

controls (n=40; 6 wk of age) were randomly assigned to a diet containing 20% casein (CAS), 

or 20, 10, 5 or 2.5% protein from whole egg (20% EGG, 10% EGG, 5% EGG, 2.5% EGG, 

respectively). All diets contained 20% total protein (w/w). All rats received their respective 

diets for a period of 8 wk, a stage of growth and development which translates to adolescence 

in humans, reaching 14 wk of age, a point at which ZDF rats exhibit overt T2D. Weight gain 

was measured 5 d/wk and circulating 25-hydroxycholecalciferol [25(OH)D] was measured by 

enzyme-linked immunoassay. Mean values were compared by a 2-way analysis of variance.  

Results: The 20% EGG diet maintained serum 25(OH)D at 30 nmol/L in ZDF rats, whereas 

the 10, 5 and 2.5% EGG diets did not prevent insufficiency, resulting in serum 25(OH)D 

concentrations of 24 nmol/L in ZDF rats. Body weight gain was reduced by 29% (P < 0.001) 
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and 31% (P < 0.001) in ZDF rats consuming 20 and 10% EGG diets, and by 16% (P = 0.004) 

and 12% (P = 0.030) in ZDF rats consuming 5 and 2.5% EGG diets compared to CAS.  

Conclusion: Whole egg-based diets exerted a dose-dependent response with respect to 

attenuating weight gain. These data may support dietary recommendations aimed at body 

weight management in individuals predisposed to obesity and T2D.    

 

Introduction 

Over 30 million people in the U.S. suffer from diabetes, with type 2 diabetes (T2D) 

accounting for approximately 90-95% of all reported cases (1). Overweight, obesity and 

excessive weight gain substantially increase diabetes risk, and body weight management is an 

effective strategy for T2D risk reduction (2–5). Dietary recommendations for type 2 diabetes 

are focused primarily on body weight management, attaining glycemic targets, and preventing 

or delaying the onset of T2D complications, including diabetic nephropathy (6–8). Vitamin D 

insufficiency and deficiency, defined by the Institutes of Medicine as circulating 25-

hydroxycholecalciferol [25(OH)D] concentrations of 30-50 nmol/L and <30 nmol/L (9), 

respectively, are highly prevalent in T2D (10,11). Furthermore, low circulating vitamin D 

concentrations are exacerbated by the presence of diabetic nephropathy, owing to excessive 

urinary excretion of 25(OH)D (12).  

Numerous studies report an association between suboptimal vitamin D status and T2D 

prevalence and incidence, as well as decreased insulin sensitivity and impaired β-cell function 

(13–17). Because cutaneous vitamin D synthesis is often limited, the population is largely 

dependent on food fortification and dietary intake of vitamin D-containing foods (18). Eggs 

are one of few naturally-occurring dietary sources of vitamin D and make an important 

contribution to vitamin D intake in the U.S. population due to their frequent consumption (19). 
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Vitamin D from eggs is provided in the forms of cholecalciferol (vitamin D3) as well as 

25(OH)D, the circulating form of vitamin D that is representative of an individual’s status (20). 

We previously reported that a whole egg-containing diet was more effective than a diet 

containing the equivalent amount of supplemental cholecalciferol at maintaining vitamin D 

status in T2D rats (21). The efficacy of the whole egg-based diet in improving vitamin D status 

may be due to the 25(OH)D content of whole egg, as several studies have reported that 

25(OH)D is more potent in raising serum 25(OH)D concentrations compared to an equivalent 

amount of cholecalciferol (22).  

In our previous studies, we also observed reduced body weight gain in obese rats with 

T2D consuming a whole egg-based diet (21,23). A limited number of studies have found 

significant weight loss following a period of daily egg intake (1-2 eggs/d) in human subjects 

(24–26), suggesting an impact of egg consumption on energy intake and/or body weight 

regulation. There is strong, consistent evidence that T2D onset can be prevented or delayed 

through lifestyle modifications resulting in weight loss, including dietary modification (8,27–

29). Furthermore, recommendations for diabetes management in individuals with existing T2D 

support lifestyle intervention to achieve weight loss and weight maintenance (30,31).  

The goal of this follow-up dose-response study was to determine the minimal amount 

of dried whole egg effective at maintaining vitamin D status and attenuating the development 

of the obese phenotype in T2D rats, as our previous studies demonstrated that dietary whole 

egg diet was successful at both reducing weight gain and maintaining vitamin D homeostasis. 

Although whole egg consumption offers several benefits for individuals with T2D, including 

a high nutrient-to-energy density and high-quality protein, the impact of egg consumption on 

cardiovascular disease risk remains controversial for this population (32–35). It has been 
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suggested that the phosphatidylcholine and choline content of eggs may contribute to 

cardiovascular disease susceptibility, due to the production of trimethylamine N-oxide 

(TMAO) following the intake of choline-containing foods (36,37), as several studies have 

reported an association between increased circulating TMAO and cardiovascular disease risk 

(37–41). Thus, a secondary objective of this study was to characterize the effect of varying 

concentrations of dietary whole egg on circulating TMAO in lean and T2D rats. 

 

Materials and Methods 

Animals and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University and were performed according to the Iowa State 

University Laboratory Animal Resources Guidelines. Male Zucker diabetic fatty (ZDF; fa/fa) 

rats (n= 40) and lean (fa/+) control rats (n= 40) were purchased at 5 wk of age (Charles River 

Laboratories). Rats were housed individually in plastic cages in a temperature-controlled room 

with a 12-h light-dark cycle. All diets were formulated by Research Diets, Inc. (New 

Brunswick, NJ). Dried whole egg was purchased from Rose Acre Farms and sent to Research 

Diets, Inc. for diet formulation. All rats were acclimated to a modified semi-purified diet (AIN-

93G) for 1 wk. At 6 wk of age, an age at which ZDF rats exhibit prediabetes (42), rats were 

randomly assigned to 1 of 5 experimental diets (Table 4-1). All diets provided protein at 20% 

(w/w) from either casein, whole egg, or a combination of casein and whole egg. The 5 

experimental diets were as follows: a diet containing 20% (w/w) casein (CAS), a diet 

containing 20% (w/w) protein from whole egg (20% EGG), a diet containing 10% casein and 

10% protein from whole egg (10% EGG), a diet containing 15% casein and 5% protein from 

whole egg (5% EGG), or a diet containing 17.5% casein and 2.5% protein from whole egg 

(2.5% EGG). All diets were matched for total lipid quantity (16.6%) via the addition of corn 
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oil to all of the diets that included casein as a protein source. Rats were given ad libitum access 

to food and water for 8 wk, such that the dietary treatment period began when ZDF rats were 

in a prediabetic state and continued until 14 wk of age, an age at which ZDF rats exhibit overt 

T2D, diabetic nephropathy and urinary loss of 25(OH)D (42–44). Body weights and food 

intake were recorded 5 d/wk. Prior to sacrifice, rats were placed in metabolic cages for 12 h, 

during which urine was collected and then stored at -80˚ C for subsequent analysis. Rats were 

anesthetized via a single intraperitoneal injection of ketamine:xylaxine (90:10 mg/kg body 

weight). Whole blood was collected via cardiac puncture, centrifuged in separation tubes, and 

the resultant serum was stored at -80°C. Euthanasia was achieved by exsanguination. Body fat, 

lean body mass, bone mineral density, and bone mineral content were measured post-necropsy 

by dual energy x-ray absorptiometry (DXA; Delphi W Hologic, Inc). DXA measurements were 

standardized by placing animals in a prone position; each animal's nose, front left paw, and 

back right paw were positioned in the same region marked on the scanning platform with tape. 

All animals were scanned following a 7 minute whole-body DXA scan by a certified DXA 

operator.  

 

Biochemical Analysis. Serum glucose was measured using a colorimetric kit (Wako 

Diagnostics; cat. no. 439-90901). Urinary total protein concentrations were determined using 

a bicinchoninic acid assay (Thermo Scientific Pierce; cat. no. 23225). Urinary creatinine was 

measured using a commercially available colorimetric kit (Cayman Chemical; cat. no. 

500701). Serum and urinary concentrations of 25(OH)D were analyzed using a commercial 

enzyme immunoassay kit (Immunodiagnostic Systems; cat. no. AC-57SF1). All analyses were 

performed according to the manufacturer’s instructions and all samples were assayed in 
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duplicate. For all biochemical analysis, absorbance was measured using the Synergy H1 

Hybrid Reader (BioTek) and analyzed using the Gen5™ Microplate Reader Software 

(BioTek). 

 

Choline Metabolites Panel. LC-MS/MS was used to measure free choline, betaine, and 

dimethylglycine, as previously described (30), with modifications to include measurements of 

methionine and TMAO.  Briefly, 100mL of 0.1% formic acid in acetonitrile and 5mL of 

internal standard mix was added to 50mL of plasma. Internal standard mix contained choline 

D13 (CDN Isotopes), betaine D3 (CDN Isotopes), dimethylglycine D3 (CDN Isotopes), 

methionine D3 (Santa Cruz Biotechnology), and trimethylamine N-oxide (TMAO) D9 

(Cambridge Isotopes). After vortexing and centrifugation, 5mL of clear supernatant was 

injected on a Syncronis Silica column (150 x 2.1mm, 5mm) with matching guard column 

(ThermoFisher Scientific). Metabolites were separated under isocratic conditions using 19% 

of 15mM ammonium formate with 0.1% formic acid, and 81% acetonitrile with a flow rate of 

0.5mL/min. Calibration curves were generated by serial dilutions of unlabeled metabolites in 

water with addition the 5mL of internal standard mix.  Positive ion SRM transitions were m/z 

76 - 58 and m/z 85 - 66 for TMAO and TMAO D9; m/z 104-60 and m/z 117-69 for choline 

and choline D13; m/z 104-58 and m/z 107-61 for DMG and DMG D3; m/z 118-58 and m/z 

121-61 for betaine and betaine D3; and m/z 150-133 and m/z 153-135 for methionine and 

methionine D3.  Assay imprecision was less than 5% for each metabolite based on in-house 

human plasma controls. 
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Statistical Analysis. All data were analyzed using SPSS Statistics Software Version 23 (IBM). 

Mean values were evaluated for statistically significant differences (P < 0.05) using a two-way 

ANOVA (genotype x diet) followed by the Fisher’s Least Significant Difference (LSD) post 

hoc test for multiple comparisons. An analysis of simple effects was performed when the 

interaction term was statistically significant. When normality failed or variances were unequal 

a nonparametric analysis was performed using the Kruskal-Wallis 1-factor ANOVA on ranks. 

 

Results  

Consumption of the EGG diets resulted in a dose-dependent decrease in cumulative weight 

gain in ZDF rats. There was a significant interaction between diet and genotype on cumulative 

weight gain; therefore, an analysis of simple effects was performed. There was a simple effect 

of diet on cumulative weight gain within the ZDF genotype (P < 0.001), but not the lean 

genotype (P = 0.337) (Figure 4-1A). As expected, weight gain was higher in ZDF rats fed CAS 

compared to all lean rats throughout the study. On d 9, weight gain in ZDF rats fed the 20, 10, 

5 and 2.5% EGG diets began to plateau, such that weight gain on d 9 was approximately 14% 

lower in all ZDF rats fed EGG diets compared to ZDF rats fed CAS. From d 23 onwards, ZDF 

rats fed 20% EGG and 10% EGG diets experienced a greater plateau in weight gain than ZDF 

rats fed 5% EGG and 2.5% EGG diets. By the end of the study, consumption of the 20% EGG 

and 10% EGG diets decreased cumulative weight gain by 29% and 31%, respectively, in ZDF 

rats compared to ZDF rats fed CAS. Additionally, cumulative body weight gain was 16% and 

12% lower, respectively, in ZDF rats fed the 5% EGG and 2.5% EGG diets compared to ZDF 

rats fed CAS (Figure 4-1A).  

 Likewise, there was a significant interaction between diet and genotype on final body 

weight, followed by a simple effect of diet within the ZDF genotype (P < 0.001), but not the 



www.manaraa.com

90 

 

lean genotype (P = 0.472) (Table 4-2). Consumption of the 20% EGG and 10% EGG diets 

decreased final body weight by approximately 11% in ZDF rats compared to ZDF rats fed the 

CAS, 5% EGG and 2.5% EGG diets. Final body weight did not differ between lean rats, 

regardless of dietary treatment group (Table 4-2). 

 

Rats fed EGG diets exhibited higher food intake than rats fed the CAS diet. There was a 

significant effect of both diet and genotype on food intake (Figure 4-1B). There was a main 

effect of diet on food intake, which was higher in all rats fed any of the EGG diets compared 

to the CAS diet. There is variation in day-to-day food intake; however, when averaged over 

the week, food intake per 100 g body weight in wk 1-4 was lower in ZDF rats fed CAS 

compared to ZDF rats fed the 10, 5 and 2.5% EGG diets, but did not differ from ZDF rats fed 

the 20% EGG diet. In wk 5, average food intake did not differ in ZDF rats fed CAS compared 

to ZDF rats fed any of the EGG diets. In weeks 6-8, average food intake was lower in ZDF rats 

fed CAS compared to ZDF rats fed any of the EGG diets. Food intake during the final wk of 

the study was approximately 36% higher with consumption of the 20%, 10% 5% and 2.5% 

EGG diets in ZDF rats compared to ZDF rats fed the CAS diet (Figure 4-1).   

 

Body Composition. Body composition parameters are presented in Table 4-2. Significant main 

effects of both diet and genotype were observed on the percentage of body fat and lean body 

mass. Percent body fat was increased by 194% in ZDF rats compared to lean rats, whereas the 

percentage of lean body mass was 41% lower in ZDF rats compared to lean rats. No differences 

in percent body fat or lean body mass were observed within the lean or ZDF genotype across 

the different diets. Likewise, significant main effects of both diet and genotype were observed 



www.manaraa.com

91 

 

on grams of body fat, whereas only a main effect of genotype was observed on grams of lean 

mass. Grams of body fat were 229% higher and grams of lean mass were 35% lower in ZDF 

rats compared to lean rats. There was a significant effect of genotype on bone mineral density, 

which was 5% lower in ZDF rats compared to lean rats. No differences in bone mineral density 

were observed within a given genotype across the different diets. In contrast, there was a 

significant effect of diet on bone mineral content. In ZDF rats, bone mineral content was 

decreased by approximately 9% in ZDF rats fed 20% EGG and 10% EGG compared to ZDF 

rats fed CAS, 5% EGG and 2.5% EGG diets. No differences in bone mineral content were 

observed within the lean genotype.  

 

Circulating 25(OH)D concentrations. There were significant main effects of both diet and 

genotype on serum concentrations of 25(OH)D (Figure 4-2). As expected, circulating 

25(OH)D concentrations were 31% lower in ZDF rats fed CAS compared to lean rats fed CAS. 

When compared with CAS, consumption of the 20% EGG diet increased serum 25(OH)D by 

35 and 40% in lean and ZDF rats, respectively. ZDF rats fed the 10% EGG, 5% EGG and 2.5% 

EGG diets exhibited serum 25(OH)D concentrations that did not differ from lean CAS-fed rats. 

However, serum 25(OH)D concentrations in ZDF rats fed 10% EGG, 5% EGG and 2.5% EGG 

also did not statistically differ from serum 25(OH)D in ZDF rats fed CAS. For lean rats, 

consumption of the 10% EGG, 5% EGG and 2.5% EGG diets resulted in serum 25(OH)D 

concentrations that did not differ from either the lean CAS or lean 20% EGG groups.  

 

Serum and urinary biochemical measurements. As expected, serum glucose concentrations 

were approximately 145% higher in ZDF rats compared to lean rats (Table 4-3). Serum glucose 
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did not differ between any of the dietary treatment groups within the lean or ZDF genotype. 

The presence of polyuria, proteinuria, and reduced creatinine clearance in ZDF rats confirmed 

a state of diabetic nephropathy. Urinary output and urinary total protein were increased by 

536% and 296%, respectively, in ZDF rats compared to lean rats (Table 4-3). Urinary 

creatinine clearance was decreased by 20% in ZDF rats compared to creatinine clearance in 

the lean genotype (Table 4-3). Urine output, urinary total protein, and urinary creatinine 

concentrations did not differ between any of the dietary treatment groups within a given 

genotype (Table 4-3). Lastly, urinary excretion of 25(OH)D was increased by 800% in ZDF 

rats compared to lean rats, confirming the loss of vitamin D in the urine of ZDF rats. No 

differences in urinary 25(OH)D were observed between dietary treatment groups within the 

lean or ZDF genotype (Table 4-3).  

 

Choline metabolites panel. Results of the choline metabolites panel are presented in Table 4-4. 

There was a significant interaction between diet and genotype on serum concentrations of 

TMAO. The simple effect of diet on serum TMAO was significant in both the lean (P = 0.032) 

and ZDF (P < 0.001) genotype. The simple effect of genotype on serum TMAO was significant 

within the 20% EGG (P = 0.002), 10% EGG (P < 0.001) and 5% EGG (P = 0.018) and 2.5% 

EGG (P = 0.013) diets, but not the CAS diet (P = 0.886). For ZDF rats, consumption of the 

20% EGG, 10% EGG, 5% EGG and 2.5% EGG diets resulted in serum concentrations of 

TMAO that were 509, 518, 255 and 355% higher, respectively, than serum TMAO in ZDF rats 

fed CAS. In lean rats, consumption of the 20% EGG and 10% EGG diets increased serum 

TMAO by 225 and 100%, respectively, compared to serum TMAO in lean rats fed CAS. Serum 
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TMAO did not differ between ZDF rats fed CAS and lean rats fed the CAS, 5% EGG and 2.5% 

EGG diets.  

There was also a significant interaction between diet and genotype on serum 

concentrations of methionine. The simple effect of diet on serum methionine was significant 

in both the lean (P < 0.001) and ZDF (P = 0.015) genotype and the simple effect of genotype 

on serum methionine was significant within all 5 dietary treatment groups. Circulating 

concentrations of methionine were 34% lower in ZDF rats compared to lean rats. Furthermore, 

there was an inverse relationship between serum methionine and the percentage of whole egg 

in the diet. There were significant main effects of both diet and genotype on serum 

concentrations of betaine. Circulating betaine concentrations were decreased by 21% in the 

ZDF genotype and were higher in the 20% EGG (P < 0.001), 10% EGG (P < 0.001) and 5% 

EGG (P < 0.001) diets compared to CAS. Lastly, there was a main effect of genotype on both 

serum choline and serum dimethylglycine. Circulating concentrations of choline were 20% 

higher in ZDF rats compared to lean rats, whereas circulating concentrations of 

dimethylglycine were 20% lower in ZDF rats.  

 

Discussion 

We previously reported attenuated body weight gain in T2D rats consuming a whole 

egg-based diet, concomitant with an increase in food intake (21). In the current study, we show 

a dose-dependent reduction in weight gain in ZDF rats fed 20% EGG, 10% EGG, 5% EGG 

and 2.5% EGG diets, which translates to a human intake of approximately 14, 7, 3.5 and 1.75 

eggs/d, respectively, when calculated based on a 2,000 kcal/d diet. Notably, all EGG diets 

resulted in reduced weight gain in ZDF rats compared to the CAS diet. In contrast to our 

findings, Pearce et al. reported no differences in weight loss following 12 wk consumption of 
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energy restricted diets with or without 2 eggs/d in human subjects with T2D (46). Similarly, 

final body weights did not differ in T2D subjects after 3 mo consumption of energy-restricted 

high egg (!12 eggs/wk) or low egg (<2 eggs/wk) diets (47). However, in a randomized, 

controlled, crossover trial of adults with type 2 diabetes, consumption of 2 egg/d for 12 wk 

significantly reduced body mass index, waist circumference and percent body fat from 

baseline, compared to exclusion of dietary eggs (26). There are notable differences between 

our animal studies and these human studies, such as age at the onset of dietary intervention and 

the stage of diabetes development. In the current study, growing rats were fed their respective 

diets from 6 wk of age (prediabetes) until 14 wk of age, a point where obesity and T2D is 

clearly indicated in the ZDF rat (43,48), whereas adult human subjects presented with obesity 

and T2D prior to dietary intervention with whole egg.  Thus, there is a significant difference 

between a prevention study design in an animal model as compared to a treatment study design 

in human studies. Our findings suggest that egg consumption may reduce weight gain during 

the development of obesity and T2D. Notably, daily consumption of a hard-boiled egg 

breakfast for 3 mo resulted in significant weight loss in obese Chinese adolescents compared 

to a breakfast consisting of steamed bread (25), which indicates that egg consumption can 

positively impact body weight management in humans during a period of growth and 

development.  

Despite a reduction in weight gain, we did not observe reduced food intake in ZDF rats 

fed all four EGG diets compared to ZDF rats fed CAS, which is in agreement with our previous 

results (21). This observation, together with leptin receptor deficiency in the ZDF rat, suggests 

that the differences in weight gain in ZDF rats fed the EGG diets were not related to satiety. 

However, the exact mechanism underlying the observed reductions in weight gain remains to 
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be determined. Whole eggs are a complex food matrix containing many components that could 

potentially contribute to the observed reduction in weight gain, including lipids, amino 

acids/peptides, vitamins, miRNAs, and bioactive compounds. Potential mechanisms 

responsible for the differential response to weight gain in lean and ZDF rats following whole 

egg consumption include alterations in energy expenditure, the composition of the gut 

microbiome, gene expression and nutrient absorption. The lipid composition of the EGG diets 

differed from that of the CAS diet, contributing phospholipid species and a distinct fatty acid 

profile, and it has been reported that the dietary lipid composition can alter rates of lipid 

oxidation, fat deposition and weight gain (49–51). Loh et al. found that the amount and type 

of dietary fat influenced weight gain, energy expenditure and carcass lipid content in obese 

Zucker rats, but had a negligible effect on lean control rats (49). It has also been shown that 

alterations in dietary fat and protein correspond to changes in the gut microbiome (52,53). 

Furthermore, several studies have reported differences in gut microbiota signatures between 

lean and obese patients (54) and dietary factors and the gut microbiota may interact to modulate 

energy metabolism and obesity (55). Therefore, an interaction between egg consumption and 

the gut microbiota may impact weight gain in ZDF rats. Additionally, eggs contain miRNAs, 

which can influence gene expression and impact human health. Baier et al. reported that egg 

miRNAs are bioavailable and modulate mRNA translation in peripheral blood mononuclear 

cells in healthy adults following consumption of one hard-boiled egg (56). Lastly, various 

peptides with "-glucosidase inhibitory activity have been isolated from egg white (57,58). 

These compounds inhibit the hydrolysis of dietary carbohydrates, thereby preventing their 

absorption, and could contribute to a reduction in body weight. 
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In our previous studies, we reported that a diet containing 20% protein (w/w) from 

whole egg markedly improved vitamin D status in ZDF rats (21,23), and may be more effective 

than an equivalent dose of supplemental cholecalciferol for maintaining serum 25(OH)D 

concentrations (21). In agreement with our previous findings, serum 25(OH)D concentrations 

were significantly higher in both lean and ZDF rats consuming the 20% EGG diet compared 

to their CAS-fed counterparts. However, in both lean and ZDF rats, consumption of the 10% 

EGG, 5% EGG and 2.5% EGG diets did not increase circulating concentrations of 25(OH)D 

compared to lean and ZDF rats fed CAS. As we’ve reported previously, there were no 

differences in urinary excretion of 25(OH)D across dietary treatment groups within a given 

genotype, indicating that the differences in serum 25(OH)D are not related to differences in 

urinary vitamin D losses (21). While egg consumption makes up a large component of the 

population’s dietary vitamin D intake, habitual dietary intakes of vitamin D fall below the 

estimated average requirement for the majority of Americans (19,59,60), as well as 

internationally (61,62). Taken together, these findings suggest that increasing the intake of 

non-fortified, naturally occurring food sources of vitamin D, such as eggs, may not be a useful 

singular strategy for improving vitamin D status in individuals with T2D. The inclusion of 

eggs in a well-balanced diet that contains other sources of vitamin D remains a useful strategy 

to maintain vitamin D homeostasis. Moreover, eggs are a good candidate for vitamin D 

fortification (63) and several studies suggest that food fortification represents an effective 

method to meet the vitamin D needs of the population (64–68). Numerous studies have 

demonstrated that the cholecalciferol and 25(OH)D content of eggs can be substantially 

increased by vitamin D supplementation of the hens’ feed (63,69–71), providing scope to meet 

dietary recommendations (63). Moreover, Hayes et al. (72) found that consumption of 7 
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vitamin D-enriched eggs per wk was protective against declining serum 25(OH)D 

concentrations in the winter. To date, there are no studies investigating whether vitamin D-

enriched eggs effectively maintain vitamin D status in rats or humans with T2D.  

The phosphatidylcholine and choline content of eggs has emerged as a potential link 

between egg consumption and cardiovascular disease (CVD) risk, due to the hepatic 

production of trimethylamine N-oxide (TMAO) following their metabolism by the intestinal 

microbiota to trimethylamine (37,41). Numerous studies have identified an association 

between circulating TMAO concentrations, CVD risk and major adverse cardiovascular events 

(73,74). Furthermore, high plasma choline and betaine, precursors of TMAO, are associated 

with risk of major adverse cardiovascular events (75). Elevated TMAO has been reported in 

rodent models of diabetes and human subjects (76–78) and T2D appears to strengthen the 

relation between TMAO and adverse cardiovascular events (41,79). In the present study, 

higher levels of egg consumption resulted in higher TMAO production in both lean and ZDF 

rats. Additionally, we observed a heightened TMAO response to whole egg consumption in 

ZDF rats compared to lean rats. Whether TMAO is a biomarker of cardiovascular pathology 

or plays a mediating role in CVD progression remains to be determined. Importantly, several 

studies also report protective effects of circulating TMAO (80). The potential relation between 

choline, TMAO and CVD risk in individuals with diabetes requires careful assessment in 

future research, particularly as choline is an essential nutrient with important roles in human 

health (81).  

There are several limitations to this study. The ZDF rat is an extreme model of obesity 

and T2D, which develops due to a genetic mutation of the leptin receptor in the brain, resulting 

in hyperphagia. Leptin receptor deficiency is rare in humans (82); thus, the etiology of obesity 
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and T2D differs between the rat model used in this study and the human condition. Secondly, 

although body fat and lean body mass was measured by DXA, identifying the distribution of 

body fat would aid in the interpretation of these results. In addition, female rats were not 

included in this study and the observed results may differ in females. Future studies will include 

measurement of fat pad weights to determine whether differences in body fat distribution exist 

between dietary treatment groups and will focus on both male and female rats to determine 

whether sex-specific differences exist. Finally, identifying a mechanism underlying the 

reduction in body weight gain in ZDF rats fed a whole egg-based diet was out of the scope of 

this study; however, future studies will be directed at elucidating potential mechanisms. 

These data demonstrate that the consumption of diets containing 20, 10, 5 and 2.5% 

protein from whole egg reduce weight gain in growing, obese rats with T2D in a dose-

dependent fashion. These findings have significant translational implications for humans, as 

intake of whole eggs in doses as low as 2.5% dietary protein from whole eggs, which translates 

to less than 2 eggs/d, may help attenuate weight gain in individuals predisposed to obesity and 

type 2 diabetes. However, long-term studies investigating egg consumption as a strategy to 

prevent excessive weight gain in a human population are warranted. Additionally, this study 

demonstrated that a diet containing 20% protein from whole egg effectively maintained 

vitamin D status in T2D rats, whereas diets containing 10, 5 and 2.5% egg protein did not 

prevent vitamin D insufficiency. Lastly, we observed an increase in serum TMAO following 

consumption of whole egg-based diets, with an augmented response in the ZDF genotype. 

Future research regarding the relation between egg consumption, TMAO, and CVD risk in 

individuals with T2D is needed. 
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Tables and Figures 

A       B 

  

Figure 4-1: Cumulative body weight gain (A) and food intake (B) in lean and ZDF rats fed 
CAS, 20% EGG, 10% EGG, 5% EGG and 2.5% EGG diets for 8 wk. Mean values at day 58 
(A) or day 53 (B) without a common letter differ (P < 0.05). Body weights and food intake 
were averaged over each wk (B). Abbreviations are: CAS, casein-based diet; 20% EGG, diet 
containing 20% (w/w) protein from whole egg; 10% EGG, diet containing 10% casein and 
10% protein from whole egg; 5% EGG, diet containing 15% casein and 5% protein from whole 
egg; 2.5% EGG, diet containing 17.5% casein and 2.5% protein from whole egg (2.5% EGG); 
and ZDF, Zucker diabetic fatty. 
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Figure 4-2: Circulating 25(OH)D concentrations in lean and ZDF rats after 8 wk dietary 
treatment with CAS, 20% EGG, 10% EGG, 5% EGG and 2.5% EGG. Data are mean values ± 
SEMs; n = 8. Bars without a common letter differ (P < 0.05). CAS, casein-based diet, 20% 
EGG, diet containing 20% (w/w) protein from whole egg; 10% EGG, diet containing 10% 
casein and 10% protein from whole egg; 5% EGG, diet containing 15% casein and 5% protein 
from whole egg; 2.5% EGG, diet containing 17.5% casein and 2.5% protein from whole egg 
(2.5% EGG); ZDF, Zucker diabetic fatty, 25(OH)D, 25-hydroxycholecalciferol.  

  

CAS 20% EGG 10% EGG 5% EGG 2.5% EGG
0

50

100

150
Se

ru
m

 2
5(

O
H

)D
 (n

m
ol

/L
)

Lean 
ZDF

Genotype: P < 0.001
Diet: P = 0.003
Genotype x Diet: P = 0.950

a
ab ab

ab
bc bc

cd cd cd
d



www.manaraa.com

109 

 

Table 4-1: Composition of the CAS, 20% EGG, 10% EGG, 5% EGG and 2.5% EGG diets fed 
to lean control and Zucker diabetic fatty rats for 8 wk1. 

      
Ingredient (g/kg) CAS 20% EGG 10% EGG 5% EGG 2.5% EGG 

  

Casein (vitamin-free) 200 0 100 150 175 

Dried standard whole egg, Type 350 2,3,4 0 405 203 102 51 

Cornstarch 434 395 414 424 429 

Glucose monohydrate 150 150 150 150 150 

Mineral Mix (AIN 93) 35 0 0 0 0 

Mineral Mix (S10022C)4 0 3.5 3.5 3.5 3.5 

Vitamin Mix (AIN 93) 10 10 10 10 10 

Biotin, 1% (w/v) 0 0.4 0.4 0.4 0.4 

Corn oil 166 0 83 124 145 

Choline bitartrate 2 2 2 2 2 

L-Methionine  3 3 3 3 3 

 

1All ingredients were purchased from Envigo with exception of dried whole egg (Rose Acre 
Farms), as well as L-methionine and choline bitartrate (Sigma Aldrich). All diets were 
formulated by and purchased from Research Diets Inc. Abbreviations are: CAS, casein-based 
diet; 20% EGG, diet containing 20% (w/w) protein from whole egg; 10% EGG, diet containing 
10% casein and 10% protein from whole egg; 5% EGG, diet containing 15% casein and 5% 
protein from whole egg; 2.5% EGG, diet containing 17.5% casein and 2.5% protein from 
whole egg (2.5% EGG). 

2 Whole egg was purchased from Rose Acre Farms and sent to Research Diets Inc. for diet 
formulation. 

3 Total protein and lipid content provided by 405 g of whole egg were 49% (200 g) and 41% 
(166 g), respectively.  

4 Custom mineral mix formulated to match all diets for mineral content. 
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Table 4-2: Percent body fat, percent lean mass, bone mineral density and bone mineral content of lean control and Zucker diabetic fatty 
rats (ZDF) fed CAS, 20% EGG, 10% EGG, 5% EGG and 2.5% EGG for 8 wk1. 

 

1Values are means ± SEMs; n=8. Mean values within a row without a common letter are statistically significant (P < 0.05). CAS, casein-
based diet, 20% EGG, diet containing 20% (w/w) protein from whole egg; 10% EGG, diet containing 10% casein and 10% protein from 
whole egg; 5% EGG, diet containing 15% casein and 5% protein from whole egg; 2.5% EGG, diet containing 17.5% casein and 2.5% 
protein from whole egg (2.5% EGG). 

  

   Lean     ZDF    P  

 CAS 20% EGG 10% EGG 5% EGG 2.5% EGG CAS 20% EGG 10% EGG 5% EGG 2.5% EGG Genotype Diet Genotype 
x Diet 

Final Body 
Weight (g) 

330 ± 
8.4bc 315 ± 7.6c 336 ± 12bc 331 ±" 

8.4bc 
322 ± 
8.2bc 

395 ± 
10a 345 ± 6.2b 332 ± 

7.3bc 
373 ± 
8.3a 380 ± 7.6a <0.001 0.002 0.001 

Body Fat (g) 59 ± 6b 42 ±3b 54 ± 5b 50 ± 5b 54 ± 4b 196 ± 
8a 151 ± 11a 155 ± 8a 168 ± 7a 183 ± 8a <0.001 0.001 0.059 

Body Fat (%) 17.8 ± 
1.7b 

13.2 ± 
0.7b 

15.8 ± 
1.0b 

15.1 ± 
1.5b 

16.8 ± 
1.2b 

49.9 ± 
1.7a 43.5 ± 3.0a 46.5 ± 1.8a 45.0 ± 

1.2a 48.2 ± 1.7a <0.001 0.013 0.966 

Lean Mass (g) 260 ± 9b 266 ± 8b 267 ± 9b 272 ± 5b 256 ± 8b 173 ± 
10a 174 ± 8a 162 ± 7a 182 ± 3a 175 ± 4a <0.001 0.422 0.581 

Lean Mass (%) 78.8 ± 1.1a 84.3 ± 
1.0a 79.5 ± 1.0a 82.3 ± 

1.2a 
79.3 ± 

0.9a 
43.8 ± 

1.7b 50.5 ± 2.6b 48.7 ± 
1.7b 

49.0 ± 
1.1b 46.2 ± 1.4b <0.001 0.001 0.687 

Bone Mineral 
Density (g/cm2) 

0.1737 ± 
0.003ab 

0.1686 ± 
0.003abc 

0.1736 ± 
0.003ab 

0.1758±" 
0.003a 

0.1691 ± 
0.002abc 

0.1641± 
0.004cd  

0.1636 ± 
0.002cd 

0.1608 ±  
0.003d 

0.1665 ±  
0.002bcd  

0.1628 ± 
0.003cd <0.001 0.292 0.646 

Bone Mineral 
Content (g) 

10.7 ± 
0.34a 

10.3 ± 
0.35ab 

10.7 ± 
0.34a 

10.8 ±" 
0.26a 

10.3 ± 
0.30ab 

10.8  ± 
0.21c 9.9 ± 0.15b 9.8 ± 

0.21b 
11 ± 
0.23a 10.7 ± 0.19a 0.845 0.012 0.110 
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Table 4-3: Biochemical measurements of lean control and Zucker diabetic fatty (ZDF) rats fed CAS, 20% EGG, 10% EGG, 5% EGG 
and 2.5% EGG for 8 wk 1. 

 

 

1 Values are means ± SEMs; n = 8. Mean values within a row without a common letter are statistically significant (P < 0.05). CAS, 
casein-based diet, 20% EGG, diet containing 20% (w/w) protein from whole egg; 10% EGG, diet containing 10% casein and 10% 
protein from whole egg; 5% EGG, diet containing 15% casein and 5% protein from whole egg; 2.5% EGG, diet containing 17.5% casein 
and 2.5% protein from whole egg (2.5% EGG). 

  

   Lean     ZDF    P  

 CAS 20% EGG 10% EGG 5% EGG 2.5% EGG CAS 20% EGG 10% EGG 5% EGG 2.5% EGG Genotype Diet Genotype 
x Diet 

Serum Glucose 
(mg/dL) 

209 ± 
19b 205 ± 15b 247 ± 21b  244 

±"23b 228 ± 18b 572 ± 
61a  501 ± 39a 576 ± 51a 611 ± 

61a  518 ± 44a <0.001 0.348 0.797 

Urinary Output (mL) 2.9 ± 
1b 2.0 ± 0.3b 2.5 ± 0.4b 2.8 

±"0.4b 4.0 ± 2b 13 ± 
2a 17 ± 1a 17 ± 2a 21 ± 3a  21 ± 2a <0.001 0.057 0.182 

Urinary Total Protein 
(mg/12 hr) 

35.6 ± 
2.5b 

52.1 ± 
5.2b 

54.2 ± 
2.6b 

47.9 
±"3.0b 40.9 ± 4.6b 139 ± 

28a 189 ± 15a 174 ± 19a 215 ± 
33a  194 ± 23a <0.001 0.145 0.388 

Urinary Creatinine 
(mg/12 hr) 

2.8 ± 
0.4ab  

2.7 ± 
0.3ab 3.2 ± 0.2a  3.1 

±"0.2a 3.0 ± 0.6a 1.9 ± 
0.3b  

2.3 ± 
0.3ab 

2.5 ± 
0.4ab 

2.6 ± 
0.5ab  2.8 ± 0.3ab 0.030 0.460 0.940 

Urinary 25(OH)D 
(pmol/mg creatinine) 

19.3 ± 
3.2b  

17.8 ± 
1.3b 

17.0 ± 
1.0b 

20.0 
±"1.8b 35.2 ± 11b 169 ± 

33a 249 ± 69a 144 ± 14a 245 ± 
37a 204 ± 33a <0.001 0.353 0.399 
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Table 4-4: Circulating concentrations of methionine, choline, betaine, dimethylglycine and TMAO of lean control and Zucker diabetic 
fatty (ZDF) rats fed CAS, 20% EGG, 10% EGG, 5% EGG and 2.5% EGG for 8 wk1. 

 

 

1 Values are means ± SEMs; n = 8. Mean values within a row without a common letter are statistically significant (P < 0.05). CAS, 
casein-based diet, 20% EGG, diet containing 20% (w/w) protein from whole egg; 10% EGG, diet containing 10% casein and 10% 
protein from whole egg; 5% EGG, diet containing 15% casein and 5% protein from whole egg; 2.5% EGG, diet containing 17.5% casein 
and 2.5% protein from whole egg (2.5% EGG); TMAO, trimethylamine N-oxide.  

 

   Lean     ZDF    P  

 CAS 20% EGG 10% EGG 5% EGG 2.5% EGG CAS 20% EGG 10% EGG 5% EGG 2.5% EGG Genotype Diet Genotype 
x Diet 

Serum Methionine 
(nmol/mL) 

93.6 
±2.1a  66.9 ± 2.2c 71.6 ± 2.7c 84.8 ± 

"2.1b 
82.0 ± 

1.4b 
56.2 ± 

2.0d 47.5 ± 1.2e 51.7 ± 
2.3de 

54.4 ± 
1.2d  

56.7 ± 
2.8d <0.001 <0.001 <0.001 

Serum Choline 
(nmol/mL) 

29.9 ± 
2.2bc  25.3 ± 1.4c 29.1 ± 

2.6bc 
38.9 ±" 

5.3ab 26.0 ± 1.5c 38.0 ± 
4.6ab 

27.7 ± 
1.5bc 

41.1 ± 
7.9ab 

34.4 ± 
5.6bc 

39.1 ±  
2.8a 0.020 0.133 0.190 

Serum Betaine 
(nmol/mL) 

89.9 ± 
3.2 cd 

122 ± 
7.1ab 

117 ± 
4.9ab 

137 ±" 
6.6a 

102 ± 
5.9bc 

60.4 ± 
10d 

103 ± 
5.8bc 104 ± 13bc 111 ± 

20bc 
72.3 ± 

4.3d <0.001 <0.001 0.892 

Serum 
Dimethylglycine 

(nmol/mL) 

6.5 ± 
0.2ab 6.9 ± 0.2a 5.9 ± 

0.4abc 
6.9 ±" 
0.5ab 

5.9 ± 
0.2abc 

4.5 ± 
0.5d 4.8 ± 0.2cd 5.8 ± 

0.7bcd 
5.3 ± 
0.7cd 

5.1 ± 
 0.4cd <0.001 0.585 0.124 

Serum TMAO 
(nmol/mL) 

1.2 ± 
0.1e 

3.9 ± 
0.4abc 

2.4 ± 
0.1bcd 

1.8 ±" 
0.1cde 1.8 ± 0.2de 1.1 ± 

0.1e 6.7 ± 1.3a 6.8 ± 0.8a 3.9 ± 
0.8abc 

4.0 ±  
0.8ab <0.001 <0.001 0.010 
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CHAPTER 5.   !WHOLE EGG CONSUMPTION IMPAIRS INSULIN SENSITIVITY IN 
A RAT MODEL OF OBESITY AND TYPE 2 DIABETES 

Saande C.J., Steffes M.A. ,Webb J.L., Valentine R.J., Rowling M.J., Schalinske K.L. 

Whole egg consumption impairs insulin sensitivity in a rat model of obesity and type 2 diabetes. 

Curr Dev Nutr; 2019; 3(4), reprinted by permission of Oxford University Press. 

 

Abstract 

Background: The literature regarding the relation between egg consumption and type 2 diabetes 

(T2D) is inconsistent and there is limited evidence pertaining to the impact of egg consumption on 

measures of insulin sensitivity.  

Objective: The objective of this study was to investigate the effect of dietary whole egg on 

metabolic biomarkers of insulin resistance in T2D rats.  

Methods: Male Zucker diabetic fatty rats (n=12; 6 wk of age) and their lean controls (n=12; 6 wk 

of age) were randomly assigned to a casein- or whole egg-based diet. At wk 5 of dietary treatment, 

an insulin tolerance test (ITT) was performed on all rats and blood glucose was measured by 

glucometer. After 7 wk of dietary treatment, rats were anesthetized and whole blood was collected 

via a tail vein bleed. Following sedation, the extensor digitorum longus muscle was removed 

before and after an intraperitoneal insulin injection and insulin signaling in skeletal muscle was 

analyzed by western blot. Serum glucose and insulin were analyzed by ELISA for calculation of 

the homeostatic model assessment of insulin resistance (HOMA-IR). 

Results: Mean ITT blood glucose over the course of 60 min was 32% higher in ZDF rats fed the 

whole egg-based diet compared to ZDF rats fed the casein-based diet. Furthermore, whole egg 

consumption increased fasting blood glucose by 35% in ZDF rats. Insulin-stimulated 

phosphorylation of key proteins in the insulin signaling pathway did not differ in skeletal muscle 
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of ZDF rats fed casein- and whole egg-based diets. In lean rats, no differences were observed in 

insulin tolerance, HOMA-IR and skeletal muscle insulin signaling, regardless of experimental 

dietary treatment. 

Conclusions: These data suggest that whole body insulin sensitivity may be impaired by whole 

egg consumption in T2D rats, although no changes were observed in skeletal muscle insulin 

signaling that could explain this finding. 

 

Introduction 

The increasing prevalence of type 2 diabetes (T2D) is a critical public health issue and 

insulin resistance is a key contributor to T2D development (1,2). Insulin resistance is a condition 

characterized by hyperinsulinemia; hyperglycemia; and impaired glucose and insulin tolerance (3). 

Diet is an important modifiable risk factor for insulin resistance and the progression of T2D. 

Therefore, understanding the relation between dietary components, such as whole egg, and insulin 

resistance is essential for developing future dietary recommendations for the millions of 

individuals with existing T2D, as well as those that are at high risk for developing T2D.  

Insulin mediates its metabolic effects by binding to the insulin receptor, thereby 

modifying the activity and/or intracellular location of proteins involved in the insulin signaling 

pathway. Insulin binding to the insulin receptor triggers autophosphorylation of the insulin 

receptor ! (IR !) subunit, which activates the receptor and initiates a cascade of phosphorylation 

events (4). Key events in the insulin signaling cascade include the activation of the insulin receptor 

substrate 1 (IRS-1) via tyrosine phosphorylation; 

serine/threonine phosphorylation of Akt and its subsequent activation; phosphorylation of 

Akt substrate 160 (AS160) at serine/threonine residues and translocation of the glucose transporter 

type 4 (GLUT4) from intracellular vesicles to the plasma membrane, resulting in increased glucose 
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uptake in skeletal muscle and adipose tissue (5–7). Defects in insulin function through the 

sequential action of the insulin receptor, IRS-1, Akt, AS160 and GLUT4 have been reported in 

metabolic disorders associated with insulin resistance, such as obesity and T2D (8,9). Impaired 

insulin signaling at any of these key steps reduces the ability of insulin to promote glucose uptake 

and utilization.  

Limited and inconsistent findings have been reported on the relation between egg 

consumption and T2D. Whereas some studies suggest that egg consumption increases the risk of 

T2D (10–12), others report a null association or a beneficial impact on T2D risk and outcomes 

(13–18). A meta-analysis found no association between egg consumption and T2D risk in 

countries outside of the U.S., but found a modest increase in T2D risk that was restricted to U.S. 

studies, suggesting that these results may be confounded by factors such as dietary behaviors of 

the U.S. population (19). Results from a recent human study suggest that the apparent association 

between egg consumption and T2D risk in the U.S. population may be due to an interaction 

between meat and egg intake, and not egg intake alone (20).  

It is widely recognized that obesity is a major risk factor for insulin resistance, which 

precedes the onset of overt diabetes (1–3). We previously reported that a whole egg-based diet 

attenuates cumulative body weight gain in the Zucker diabetic fatty (ZDF) rat, a well-characterized 

genetic model of obesity and T2D (21,22). The observed attenuation in body weight gain was 

attributed, in part, to an 8% reduction in body fat in ZDF rats consuming a whole egg-based diet 

(21). Furthermore, we extended this research to a diet-induced model of obesity and demonstrated 

that whole egg consumption in diet-induced obese rats markedly reduces weight gain compared to 

diet-induced obese rats fed a casein-based diet (unpublished observations; CJ Saande, SK Jones, 

KE Hahn, CH Reed, MJ Rowling, KL Schalinske, 2017). There is very limited evidence regarding 
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the association between egg consumption and measures of insulin sensitivity (14,23,24) and, to 

our knowledge, the impact of whole egg consumption on insulin signaling has not been examined. 

Thus, the objective of this study was to investigate whether the previously observed reductions in 

adiposity in ZDF rats fed a whole egg-based diet are related to improved insulin sensitivity and 

enhanced insulin signaling.   

 

Materials and Methods 

Rats and Diets. All animal studies were approved by the Institutional Animal Care and Use 

Committee at Iowa State University (IACUC # 1-18-8674-R; approval date 01/12/18) and were 

performed according to the Iowa State University Laboratory Animal Resources Guidelines. Male 

Zucker diabetic fatty (ZDF; fa/fa) rats (n= 12) and lean (fa/+) control rats (n=12) were purchased 

at 5 wk of age (Charles River Laboratories). Rats were housed two per cage with a 12-h light-dark 

cycle in a temperature controlled room. All rats were acclimated to a semipurified diet (AIN-93G) 

for one wk. Following acclimation, rats were randomly assigned to 1 of 2 experimental diets (Table 

5-1): a casein-based diet (n=12) or a whole egg-based diet (n=12). Both diets provided protein at 

20% (w/w) and were matched for lipid content (17.7% total lipid) via the addition of corn oil to 

the casein-based diet to account for the additional lipid contribution of the whole egg. Diets were 

prepared weekly and rats were given ad libitum access to food and water for a period of 7 wk. 

Body weight and food intake were recorded 5 days/wk. Prior to sacrifice, food was withheld for 4 

h and rats were anesthetized via a single intraperitoneal (IP) injection of ketamine:xylazine (90:10 

mg/kg body weight). Following sedation, whole blood was collected via a tail vein bleed and blood 

samples were stored on ice until centrifugation. The extensor digitorum longus (EDL) muscle was 

removed from one leg prior to an insulin injection to account for basal differences in insulin 

signaling. All rats were then given an IP insulin injection (Sigma; 10 U/kg body weight) and the 
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EDL muscle was removed from the other leg 10 min post-insulin injection to allow sufficient time 

for insulin signaling to occur (25–28). Immediately following tissue removal, muscle samples were 

snap-frozen in liquid nitrogen and stored at -80°C for subsequent analysis. The epididymal fat pad 

was removed and weighed. A total of 24 rats were euthanized; euthanasia was achieved by 

exsanguination. Whole blood was centrifuged in separation tubes and the resultant serum was 

stored at -80°C.  

 

Insulin tolerance tests. Insulin tolerance tests (ITT) were performed at wk 5 of experimental 

dietary treatment. Rats were fasted for a period of 4 h prior to insulin tolerance testing and given 

an IP insulin injection (0.5 U/kg body weight). Blood samples were collected from the tail vein 

immediately prior to the insulin challenge, as well as 15, 30, 45 and 60 min thereafter. Blood 

sampling was performed by making a nick with a sterilized razor blade toward the end of the tail 

and blood glucose was measured with the use of a glucometer (Bayer Healthcare). When blood 

glucose was above the detection limit (600 mg/dL), the maximum value of 600 mg/dL was used.  

 

Serum glucose and serum insulin. Serum collected on the final day of the study was used for 

analysis of fasting glucose, fasting insulin and calculation of the homeostatic model assessment of 

insulin resistance (HOMA-IR). Serum glucose was measured using a commercially available 

colorimetric kit (Wako Diagnostics). Analysis of serum insulin was measured by a commercially 

available immunoassay kit for the detection of insulin in rat sera (EMD Millipore).  

 

Western blot analysis. Extensor digitorum longus muscles were homogenized in 800 µL of lysis 

buffer [Tris-hydrochloric acid (pH 7.8, 50 mM), Ethylenediaminetetraacetic acid (EDTA; 1 mM) 
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Ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA; 1 mM), Glycerol (10%, w/v), Triton-X 

100 (1%, w/v), Dithiothreitol (DTT; 1 mM)] containing phosphatase (Sigma) and protease 

(Thermo Scientific) inhibitors. Samples were then centrifuged at 4000 x g for 15 min at 4°C and 

the supernatant was collected. Protein concentrations were determined using a bicinchoninic acid 

assay (Pierce) according to the manufacturer’s instructions. A total of 20 µg protein was loaded 

and run on a 4-15% gradient sodium dodecyl sulfate polyacrylamide gel (Bio-Rad). Following 

separation, proteins were transferred onto a polyvinylidene difluoride membrane (EMD Millipore) 

and blocked at room temperature for 1 h in Tris-buffered saline with 0.05% tween (TBST) and 5% 

non-fat dry milk. Membranes were incubated in p-IGFI Receptor βTyr1135/1136/Insulin Receptor 

βTyr1150/1151, p-AktSer473, Akt and p-AS160Thr642 antibodies (Cell Signaling) at 1:1000 overnight at 

4 °C. Following incubation with primary antibody, membranes were washed and incubated with 

an anti-rabbit secondary antibody (Cell Signaling) at 1:5000 for one hour at room temperature. 

Membranes were incubated in enhanced chemiluminescent substrate (SuperSignal West Pico 

PLUS Sensitivity Substrate or SuperSignal West Femto Maximum Sensitivity Substrate; Thermo 

Scientific) for 5 min prior to imaging with the ChemiDoc XRS detection imaging system (Bio-

Rad). Densitometry was determined using Image Lab software (BioRad) and raw data was 

normalized to total protein.  

 

Statistical analysis. All data were evaluated for statistically significant differences (P < 0.05) with 

the use of SPSS Statistics Software Version 23 (IBM). Body and epididymal fat pad weights, food 

intake and serum parameters were analyzed with the use of a 2-factor ANOVA (diet x genotype). 

An analysis of main effects was performed when the interaction between diet and genotype was 

not statistically significant. Insulin tolerance test data was analyzed by a 3-factor, repeated 
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measures ANOVA (time x diet x genotype) and statistically significant two-way interactions were 

followed by an analysis of simple main effects. Western blot data was analyzed with the use of a 

3-factor mixed ANOVA to determine the effects of insulin, diet and genotype on insulin signaling. 

All pairwise comparisons were performed using the Fishers least significant difference post hoc 

test. 

 

Results  

Body and relative adipose tissue weights. As expected, there was a significant main effect of 

genotype on initial and final body weight. ZDF rats had a higher mean initial body weight 

compared to their lean counterparts and body weight was 13% higher in ZDF rats compared to 

lean rats on the final day of the study. Diet was without effect on final body weight in both lean 

and ZDF rats (Table 5-2). Likewise, there was a significant main effect of genotype on relative 

adipose tissue weight [epididymal fat pad weight (g/ 100 g body weight)]. The ZDF genotype was 

associated with a 74% higher mean relative adipose tissue weight than the lean genotype. No 

significant differences in relative adipose tissue weight were observed across diets within lean or 

ZDF rats (Table 5-2).   

 

Food intake. Main effects analysis indicated a significant effect of genotype on food intake and 

total energy intake. ZDF rats exhibited an 86% higher mean total food intake compared to lean 

rats (Table 5-2). Likewise, total energy intake was 86% higher in ZDF rats compared to lean rats 

(Table 5-2).  There was no effect of diet on total food intake or total energy intake.  

 

Insulin tolerance test. Analysis of ITT blood glucose concentrations revealed a significant effect 

of time on circulating glucose concentrations, demonstrating that insulin effectively lowered blood 
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glucose. There was also a significant effect of genotype and diet, as well as significant 

diet*genotype and time*genotype two-way interactions. As expected, there was a simple main 

effect of genotype (P < 0.001) on blood glucose, indicating markedly higher blood glucose in ZDF 

rats compared to lean rats at each time point (Figure 5-1). A simple main effect of time was also 

observed in the ZDF genotype (P = 0.001), but not the lean genotype (P = 0.836). Lastly, a simple 

main effect of diet was observed in the ZDF genotype (P < 0.001), but not in the lean genotype (P 

= 0.987). With the exception of baseline blood glucose, ZDF rats fed the whole egg-based diet 

exhibited approximately 38% higher blood glucose concentrations from the 15-60 min time points 

compared to ZDF rats fed the casein-based diet. In contrast, blood glucose did not differ between 

dietary treatment groups in lean rats at any of the time points (Figure 5-1).  

 

Serum glucose, serum insulin, HOMA-IR and HOMA-!. There was a significant main effect of 

genotype on serum glucose, serum insulin and the HOMA-IR. As expected, mean serum glucose, 

serum insulin and HOMA-IR values were 244, 629 and 234% higher, respectively, in the ZDF 

genotype compared to the lean genotype (Table 5-3). Diet was without effect on serum glucose 

concentrations within the lean genotype; however, serum glucose concentrations were increased 

by 35% in ZDF rats fed the whole egg-based diet compared to ZDF rats fed the casein-based diet 

(Table 5-3). No differences in serum insulin concentrations were observed across dietary groups 

within the lean genotype, whereas serum insulin was 68% higher in ZDF rats fed the casein-based 

diet compared to ZDF rats fed the whole egg-based diet. There was no effect of diet on the HOMA-

IR within the lean or ZDF genotype (Table 5-3). Lastly, there was a significant main effect of diet 

on the homeostatic model assessment of !-cell function (HOMA-!). The whole egg-based diet 
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was associated with a mean decrease of 44% in HOMA-! compared to the casein-based diet (Table 

5-3).  

 

Insulin signaling pathway.  Insulin increased phosphorylation of the IR βTyr1150/1151 by 291% in 

lean rats fed the whole egg-based diet compared to IR βTyr1150/1151 phosphorylation prior to insulin 

(Figure 5-2); however, post-insulin IR βTyr1150/1151 phosphorylation did not reach statistical 

significance (P = 0.215) in lean casein-fed rats compared to pre-insulin p- IR βTyr1150/1151. No 

differences in p-IR βTyr1150/1151 were observed pre- or post-insulin in ZDF rats, regardless of dietary 

treatment (Figure 5-2). In lean rats fed the casein- and whole egg-based diets, the post-insulin ratio 

of p-AktSer473: total Akt was increased 17-fold and 18-fold, respectively, compared to the pre-

insulin ratio (Figure 5-3). Pre- and post-insulin p-AktSer473: total Akt did not differ in ZDF rats, 

regardless of dietary treatment. However, in ZDF rats fed the whole egg-based diet, the post-

insulin p-AktSer473: total Akt ratio did not statistically differ from the lean genotype (Figure 5-3). 

No differences in post-insulin p-AS160Thr642 were observed, regardless of diet or genotype (data 

not shown). 

 

Discussion 

The relation between egg consumption and T2D remains contradictory and evidence is 

limited regarding potential mechanisms that may explain the reported associations between dietary 

egg intake, glycemic control and incident diabetes. The present study aimed to examine the effects 

of egg consumption on insulin tolerance and insulin signaling in vivo using a rat model of obesity 

and T2D. While egg consumption impaired glycemic control in ZDF rats during an insulin 

tolerance test, no differences were observed in skeletal muscle insulin signaling between ZDF rats 
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fed casein- and whole egg-based diets. Although skeletal muscle is the primary site of insulin-

stimulated glucose disposal, glucose metabolism by the liver and adipose tissue also contributes 

to whole body glucose homeostasis (29–31). The relative contribution of these tissues to systemic 

glucose metabolism, as well as differences in timing between insulin tolerance testing and skeletal 

muscle collection for insulin signaling analysis, may explain the differential results observed 

between whole body insulin tolerance and skeletal muscle insulin signaling. Very few studies have 

investigated the effect of egg consumption on direct measures of insulin sensitivity (23). In the 

present study, we report higher blood glucose during an insulin tolerance test in ZDF rats 

consuming a whole egg-based diet compared to ZDF rats fed a casein-based diet. In support of this 

finding, egg consumption was inversely associated with insulin sensitivity and the metabolic 

clearance rate of insulin in a cross-sectional analysis of a non-diabetic population, though these 

associations became insignificant after adjustment for body mass index and dietary cholesterol 

(23). Likewise, Djousse et al. reported an increase in fasting blood glucose and insulin resistance, 

as measured by HOMA-IR, across varying amounts of egg consumption in a prospective cohort 

of older adults (14). However, the authors noted that the magnitude of difference, although 

statistically significant, was not likely to be of clinical significance (14). Here, we report higher 

fasting blood glucose in ZDF rats after 7 wk of dietary treatment with the whole egg-based diet, 

but no differences in HOMA-IR, a model used to quantify insulin resistance, between ZDF rats 

fed casein- and whole egg-based diets.  

In the early stages of insulin resistance, enhanced pancreatic insulin secretion attempts to 

compensate for reduced responsiveness to insulin in peripheral tissues as a means to maintain 

normal glucose tolerance. A physiologic approach to accomplish this goal is by enhanced !-cell 

mass and activity (32,33). As insulin resistance progresses, compensatory hyperinsulinemia is 
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unable to maintain normal blood glucose concentrations. Insulin secretion is continuously 

stimulated by hyperglycemia, and !-cell structure and function becomes compromised, ultimately 

leading to apoptosis (33). In ZDF rats, !-cell mass decreases between ages 6-12 wk of age, and is 

significantly reduced at 12 wk (34–36). The observed loss of !-cell mass has been attributed an 

increase in cell death (34,35). !-cell dysfunction in ZDF rats is accompanied by a progressive 

decline in circulating insulin concentrations, beginning at 7 wk of age (34,36). We report 

significantly lower serum insulin, concomitant with higher serum glucose, in ZDF rats fed the 

whole egg-based diet compared to ZDF rats fed the casein-based diet after 7 wk of dietary 

treatment (13 wk of age). Additionally, consumption of a whole egg-based diet was associated 

with decreased HOMA-!, an index of !-cell function, suggesting impaired insulin production and 

secretion in rats fed the whole egg-based diet. It is possible that ZDF rats fed the whole egg-based 

diet exhibit a higher rate of decline in !-cell function, potentially explaining these differences. In 

cultured !-cells, cholesterol accumulation results in apoptosis and impaired glucose-stimulated 

insulin secretion (37–40). The cholesterol content of whole egg may play a role in the observed 

reduction in serum insulin; however, whether whole egg consumption impacts !-cell function in 

ZDF rats remains to be determined.  

Aberrant insulin signaling in skeletal muscle and adipose tissue impairs insulin-mediated 

translocation of GLUT4 and subsequent glucose uptake. To our knowledge, there are no previous 

studies examining the effect of egg consumption on insulin signaling. In the present study, 

phosphorylation of IR βTyr1150/1151 was not significantly increased in ZDF rats following an insulin 

injection, regardless of experimental dietary treatment. This result is consistent with findings from 

numerous human studies, which show reduced tyrosine phosphorylation of the insulin receptor 

and its subsequent kinase activity in states of insulin resistance (41–46). The serine/threonine 
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kinase Akt is activated by insulin-stimulated phosphorylation at both Thr308 and Ser473 and plays 

a key role in the regulation of glucose uptake into insulin responsive tissues (47). As expected, we 

report a marked increase in the ratio of p-AktSer473: total Akt in lean rats in response to insulin. 

Conversely, the p-AktSer473: total Akt ratio was not significantly increased by insulin in ZDF rats 

fed both casein- and whole egg-based diets. In agreement with this finding, several studies report 

defective Akt phosphorylation and kinase activity in insulin resistant subjects compared to lean 

controls (48–52). Phosphorylation of AS160, a downstream substrate of Akt, links insulin 

signaling to GLUT4 translocation and impaired insulin-stimulated AS160 phosphorylation has 

been reported in skeletal muscle of diabetic human subjects (52,53). In contrast to these findings, 

we did not observe differences in post-insulin p-AS160Thr642 between lean and ZDF rats, regardless 

of dietary treatment group.  

Eggs are a source of high-quality protein, and several human studies report an association 

between egg consumption, increased satiety and reduced caloric intake (54–57). Egg consumption 

has also been shown to promote weight loss in a limited number of human studies (58,59). In 

contrast to our previous findings (21,22), we did not observe a reduction in body weight gain in 

ZDF rats fed a whole egg-based diet. Moreover, relative adipose tissue weight not differ between 

ZDF rats, regardless of dietary treatment. It is well-documented that weight loss is a highly 

effective strategy to improve insulin sensitivity and glycemia, both in the prevention and treatment 

of T2D (60,61). Furthermore, numerous human studies report improved glycemic control in type 

2 diabetics following adherence to low-carbohydrate, low-glycemic index and high-protein diets 

(62,63). Indeed, beneficial impacts off egg consumption on blood glucose control have been shown 

in human subjects when combined with energy or carbohydrate restriction (13,24,64,65). For 

example, Pearce et al. reported improvements in glycemic and lipid profiles in type 2 diabetics 
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following consumption of a hypoenergetic, high-protein diet containing 2 eggs/d (13). In 

individuals with metabolic syndrome, Blesso et al. found a reduction in HOMA-IR following 

consumption of a carbohydrate-restricted diet including 3 eggs/d (24). In the current study, rodent 

diets were matched for macronutrient content and there were no differences in final body weight 

between ZDF rats fed casein-based and whole egg-based diets. Taken together, these findings 

suggest that reported improvements in glycemic control associated with egg consumption may be 

related to changes in dietary macronutrient content and/or improved body weight management, 

and not a direct effect of egg consumption on skeletal muscle insulin signaling.  

A limitation of this study is the quantity of dried whole egg used in the whole egg-based 

diet, which exceeds the amount of whole egg that would typically be consumed in a human diet. 

The quantity of dried whole egg was determined such that the whole egg- and casein-based diets 

were matched for protein content. Additionally, analysis of !-cell mass and glucose-stimulated 

insulin secretion would provide insight into whether !-cell function declines more rapidly in ZDF 

rats fed the whole egg-based diet. Lastly, insulin signaling was only analyzed in the EDL muscle. 

The EDL is frequently used in analysis of skeletal muscle insulin signaling (7,66–69). However, 

it is possible that sensitivity for phosphoregulation by insulin may differ in other muscle groups. 

Future studies will include analysis of skeletal muscle groups composed of different fiber types, 

as well as additional tissues, to provide a more comprehensive examination of insulin signaling.  

In summary, these data suggest that whole egg consumption may impair insulin sensitivity 

in T2D rats. Although consumption of a whole egg-based diet negatively impacted whole body 

insulin sensitivity in ZDF rats, we were unable to identify changes in skeletal muscle insulin 

signaling that could explain this finding. Future studies investigating the impact of whole egg 

consumption on !-cell function may offer a potential explanation for the reduction in fasting serum 
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insulin in ZDF rats fed a whole egg-based diet. Furthermore, dose-response studies are warranted 

to determine whether the observed impairment in insulin sensitivity is maintained at a lower dose 

of whole egg.  
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Tables and Figures 

 

Figure 5-1: Insulin tolerance test blood glucose in lean and Zucker diabetic fatty rats fed a casein-
based or whole egg-based diet for 5 wk.  Data are means ± SEMs; n=3-6. Data within the same 
time point without a common letter differ (P < 0.05). Three-factor repeated measures ANOVA: 
Time, P < 0.001; Diet, P = 0.027; Genotype, P < 0.001; Time*Diet, P = 0.662; Time*Genotype P 
= 0.031; Diet*Genotype P = 0.025; Time*Diet*Genotype, P = 0.572.  
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Figure 5-2: Skeletal muscle p-IR βTyr1150/1151 (A) and representative western blot images of skeletal 
muscle p-IR βTyr1150/1151 and total protein (B) pre- and post-insulin injection in lean and Zucker 
diabetic fatty rats fed a casein-based or whole egg-based diet for 7 wk. Data are expressed relative 
to pre-insulin p-IR βTyr1150/1151 in lean rats fed the casein-based diet. Data are means ± SEMs; n=5-
6. Bars without a common letter differ (P < 0.05). Three-factor mixed ANOVA: Insulin, P = 0.029; 
Diet, P = 0.492; Genotype, P = 0.874; Insulin*Diet, P = 0.297; Insulin*Genotype P = 0.169; 
Diet*Genotype P = 0.723; Insulin*Diet*Genotype, P = 837. LC-Pre, Lean Casein Pre-insulin; LC-
Post, Lean Casein Post-insulin; ZC-Pre, ZDF Casein Pre-insulin; ZC-Post, ZDF Casein Post-
insulin; LWE-Pre, Lean Whole Egg Pre-insulin; LWE-Post, Lean Whole Egg Post-insulin; ZWE-
Pre, ZDF Whole Egg Pre-insulin; ZWE-Post, ZDF Whole Egg Post-insulin.  
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Figure 5-3: The ratio of skeletal muscle p-AktSer473: total Akt (A) and representative western blot 
images of skeletal muscle p-AktSer473, total Akt and total protein (B) pre- and post-insulin injection 
in lean and Zucker diabetic fatty (ZDF) rats fed a casein-based or whole egg-based diet for 7 wk. 
Data are expressed relative to the pre-insulin p-AktSer473:total Akt ratio in lean rats fed the casein-
based diet. Data are means ± SEMs; n=5-6. Bars without a common letter differ (P < 0.05). Three-
factor mixed ANOVA: Insulin, P < 0.001; Diet, P = 0.53; Genotype, P = 0.157; Insulin*Diet, P = 
0.571; Insulin*Genotype P = 0.11; Diet*Genotype P = 0.535; Insulin*Diet*Genotype, P = 0.609. 
LC-Pre, Lean Casein Pre-insulin; LC-Post, Lean Casein Post-insulin; ZC-Pre, ZDF Casein Pre-
insulin; ZC-Post, ZDF Casein Post-insulin; LWE-Pre, Lean Whole Egg Pre-insulin; LWE-Post, 
Lean Whole Egg Post-insulin; ZWE-Pre, ZDF Whole Egg Pre-insulin; ZWE-Post, ZDF Whole 
Egg Post-insulin. 
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Table 5-1: Composition of the casein-based diet and whole egg-based diet fed to lean control and 
Zucker diabetic fatty rats for 7 wk. 

Ingredient (g/kg)1 Casein  Whole Egg  
  

Casein (vitamin free) 200 0 

Dried whole egg 0 413 

Cornstarch 423 387 

Glucose monohydrate 150 150 

Mineral Mix (AIN 93) 35 35 

Vitamin Mix (AIN 93) 10 10 

Biotin 1% 0 0.4 

Corn oil 177 0 

Choline bitartrate 2 2 

L-Methionine 3 3 

Macronutrients (kcal/kg)   
  

Protein 800 800 

Lipid 1593 1593 

Carbohydrate 2292 2148 

Total Energy 4685 4541 

1All ingredients were purchased from Envigo with the exception of dried whole egg (Rose Acre 
Farms) as well as L-methionine and choline bitartrate (Sigma-Aldrich).  

2 Total protein and lipid content provided by 413 g of dried whole egg was 48.4 (200g) and 42.9% 
(177g), respectively.
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Table 5-2: Body and adipose tissue weights and total food intake of lean and Zucker diabetic fatty (ZDF) rats fed a casein-based or 
whole egg-based diet for 7 wk.   

 

1 Data are means ± SEMs; n=6. Data within the same row without a common letter differ (P < 0.05). 

2 Data are means ± SEMs; n=3. Total food intake per cage (2 rats per cage). Data within the same row without a common letter differ 
(P < 0.05). 

  

 Lean ZDF P 

 Casein Whole Egg Casein Whole Egg Genotype Diet Genotype x Diet 

Initial Body Weight1 (g) 157 ± 5a 155 ± 6a 191 ± 6b 191 ± 4b <0.001 0.877 0.824 

Final Body Weight1 (g) 329 ± 7a 334 ± 5a 378 ± 4b 371 ± 8b <0.001 0.897 0.368 

Epididymal Fat Pad 
Weight1 (g/100 g body 

weight) 
0.47 ± 0.04a 0.50 ± 0.08a 0.86 ± 0.08b 0.83 ± 0.03b <0.001 0.992 0.642 

Total Food Intake2 (g) 990 ± 28a 930 ± 29a 1843 ± 135b 1732 ± 163b <0.001 0.449 0.818 

Total Energy Intake2 (kcal) 4639 ± 130a 4224 ± 132a 8636 ± 632b 7865 ± 740b <0.001 0.265 0.729 
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Table 5-3: Fasting serum glucose, fasting serum insulin, HOMA-IR and HOMA-! of lean and Zucker diabetic fatty (ZDF) rats fed a 
casein-based or whole egg-based diet for 7 wk1.   

 Lean ZDF P 

 Casein Whole Egg Casein Whole Egg Genotype Diet Genotype x 
Diet 

Serum glucose (mg/dL) 124 ± 13c 189 ± 19c 457 ± 31b 618 ± 86a <0.001 0.026 0.317 

Serum Insulin (ng/mL) 0.3 ± 0.1c 0.4 ± 0.1c 3.2 ± 0.4a 1.9 ± 0.6b <0.001 0.116 0.078 

HOMA-IR 2.1 ± 0.46b 4.0 ± 1.2b 82 ± 9.3a 59 ± 20a <0.001 0.344 0.267 

HOMA-! (%) 51 ± 13ab 32 ± 13b 72 ± 13a 37 ± 12ab 0.331 0.046 0.554 

1 Data are means ± SEMs; n=6. Data within the same row without a common letter differ (P < 0.05).  
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CHAPTER 6.   !DIETARY EGG PROTEIN PREVENTS HYPERHOMOCYSTEINEMIA 
VIA UPREGULATION OF HEPATIC BETAINE HOMOCYSTEINE S-

METHYLTRANSFERASE ACTIVITY IN FOLATE-RESTRICTED RATS 

Saande C.J., Pritchard S.K., Worrall D.M., Snavely S.E., Nass C.A., Neuman J.C., 

Luchtel R.A., Dobiszewski S., Miller J.C., Vailati-Riboni M., Loor J.J.,Schalinske K.L. Dietary 

egg protein prevents hyperhomocysteinemia via upregulation of hepatic betaine-homocysteine S-

methyltransferase activity in folate-restricted rats. J Nutr; 2019, reprinted by permission of 

Oxford University Press. 

 

Abstract 

Background: Hyperhomocysteinemia is associated with increased cardiovascular disease risk. 

Whole eggs contain several nutrients known to impact homocysteine regulation, including sulfur 

amino acids, choline, and B vitamins.  

Objective: The objective of this study was to determine the effect of whole eggs and egg 

components (i.e. egg protein and choline) with respect to 1) homocysteine balance and 2) the 

hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and 

cystathionine !-synthase (CBS) in a folate-restricted rat model of hyperhomocysteinemia.  

Methods: Male Sprague Dawley rats (N=48; 6 wk of age) were randomly assigned to a casein-

based diet (C; n=12), a casein-based diet supplemented with choline (C+Cho; 1.3%, w/w; n=12), 

an egg protein-based diet (EP; n=12), or a whole egg-based diet (WE; n=12). At wk 2, half of the 

rats in each of the 4 dietary groups were provided a folate-restricted (FR; 0 g folic acid/kg) diet 

and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All 

diets contained 20% (w/w) total protein. Serum homocysteine was measured by HPLC and BHMT 
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and CBS expression and activity were evaluated using RT-qPCR, western blot and enzyme 

activity. A 2-factor ANOVA was used for statistical comparisons. 

Results: Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations 

compared to rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between 

rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40%, 

respectively, by the EP (P < 0.001) and WE (P = 0.002) diets compared to the C diets.  

Conclusions: Dietary intervention with egg protein prevented elevated circulating homocysteine 

concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic 

BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting 

hyperhomocysteinemia prevention. 

 

Introduction 

The metabolism of folate, methyl groups, and homocysteine are interrelated processes that 

play a critical role in maintaining optimal health. Perturbation of these pathways can result in 

hyperhomocysteinemia, which has been implicated as a risk factor for cardiovascular disease 

(CVD) (1–4). Elevated circulating homocysteine concentrations are associated with increased risk 

of several cardiovascular pathologies, including myocardial infarction, stroke, and atherosclerosis 

(1,5). Therefore, maintenance of homocysteine balance may play a role in the prevention of 

cardiovascular disease-associated morbidity and mortality.  

Homocysteine is a sulfur-containing amino acid derived from the metabolism of the 

indispensable amino acid methionine. Homocysteine metabolism occurs via three pathways: 1) 

folate-dependent remethylation to methionine, a reaction catalyzed by the vitamin B-12-dependent 

enzyme methionine synthase; 2) folate-independent remethylation catalyzed by betaine-

homocysteine S-methyltransferase (BHMT); and 3) irreversible catabolism by the vitamin B-6-
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dependent enzyme cystathionine β-synthase (CBS) (6) (Figure 6-1). The etiology of 

hyperhomocysteinemia has been attributed to several factors, including genetics, chronic disease, 

sex, age, and nutritional deficiencies. Genetically inherited mutations in genes encoding the 

enzymes CBS and 5,10-methylenetetrahydrofolate reductase (MTHFR) result in an inability of the 

cell to adequately metabolize homocysteine (Figure 6-1) (7–9).  Hyperhomocysteinemia is also 

associated with chronic diseases, such as renal disease, diabetes, hypertension, and 

hypothyroidism, as well as male sex and older age (10–12). Additionally, nutritional deficiencies 

in folate, vitamin B-12, and vitamin B-6 impair homocysteine regulation (13–15). Several studies 

have reported an inverse correlation between B vitamin intake and CVD risk  (14,16–22).  

Homocysteine metabolism relies on several nutrient substrates and cofactors; therefore, 

dietary composition plays an important role in maintaining homocysteine balance. Whole eggs are 

a significant source of folate, vitamin B-12 and vitamin B-6 (23). Furthermore, egg yolk is a rich 

source of choline, utilized as a methyl donor in the folate-independent remethylation of 

homocysteine (6,23). Lastly, egg protein provides a balanced content of the sulfur amino acids 

methionine and cysteine (23), and variations in dietary sulfur amino acid content have been 

reported to regulate homocysteine metabolism (24,25). In our preliminary studies, we have 

consistently found that hyperhomocysteinemia was prevented in folate-restricted rats fed an egg 

protein-based diet, concomitant with an increase in hepatic BHMT activity. Thus, the aim of this 

study was to expand upon our preliminary findings by investigating the impact of dietary whole 

eggs and egg components (i.e. choline and egg protein) on 1) circulating homocysteine 

concentrations and 2) hepatic expression and activity of BHMT and CBS in a folate-restricted rat 

model of moderate hyperhomocysteinemia. 
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Materials and Methods 

Rats and Diets. All animal studies were approved by the Institutional Animal Care and Use 

Committee at Iowa State University and were performed according to the Iowa State University 

Laboratory Animal Resources Guidelines. Male Sprague Dawley rats (N= 48) were purchased at 

5 wk of age (Envigo). Rats were housed 2 per cage in ventilated cages (Innovive) with a 12-h light-

dark cycle in a temperature-controlled room. All rats were acclimated to a semi-purified diet (AIN-

93G) for 1 wk. Following acclimation, rats were randomly assigned to 1 of 4 experimental diets 

(n= 12 rats per group): a casein-based diet (C); a casein-based diet supplemented with choline 

(1.3%, w/w, C+Cho); an egg protein-based diet (EP); or a whole egg-based diet (WE). At wk 2, 

half of the rats in each dietary group were provided the same treatment diet, but with the omission 

of folate (folate-restricted, FR; 0 g folic acid/kg) from the vitamin mix, and half of the rats 

continued on the original folate-sufficient (FS; 0.2 g folic acid/kg) diet for the remainder of the 8 

wk study period. This resulted in a total of 8 experimental dietary groups: a folate-sufficient casein-

based diet (FS-C); a folate-restricted casein-based diet (FR-C); a folate-sufficient casein-based diet 

supplemented with choline (FS-C+Cho); a folate-restricted casein-based diet supplemented with 

choline (FR-C+Cho); a folate-sufficient egg protein-based diet (FS-EP); a folate-restricted egg 

protein-based diet (FR-EP); a folate-sufficient whole egg-based diet (FS-WE); and a folate-

restricted whole egg-based diet (FR-WE) (Table 6-1). Supplemental choline in the casein-based 

diet was matched to the choline content provided by the whole egg-based diet (1.3%, w/w). FR 

was achieved with a custom-formulated vitamin mix (Envigo) devoid of folate. FR rats were 

provided diets and drinking water without added antibiotics to elicit a moderate degree of 

hyperhomocysteinemia, as we have previously reported (26). All diets provided protein at 20% 

(w/w) and were matched for lipid quantity (17.7% total lipid) via the addition of corn oil to the C, 

C+Cho and EP diets to account for the additional lipid contribution of the whole egg. It is important 
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to note that all diets were matched for total lipid quantity, but differed in lipid composition. Dried 

whole egg also contributed phospholipid species to the WE diets, primarily phosphatidylcholine 

and phosphatidylethanolamine, as well as cholesterol a fatty acid profile that differs from that of 

corn oil (23,27,28). All diets were prepared weekly and rats were given ad libitum access to food 

and water for the duration of the study. Body weights were recorded 5 d/wk. Prior to sacrifice, 

food was withheld for 12 h to ensure that all rats were in a fasted state. Rats were anesthetized via 

a single intraperitoneal injection of ketamine:xylazine (90:10 mg/kg body weight). Whole blood 

was collected via cardiac puncture, centrifuged at 4,000 x g for 15 min, and the resulting serum 

fraction was stored at -80°C. The liver was removed, snap-frozen in liquid nitrogen, and stored at 

-80°C for subsequent analysis.  

 

Enzyme-linked immunoassays. Liver samples were homogenized in 5 vol of phosphate buffered 

saline [PBS; NaCl (138 mM), KCl (2.7 mM), Na2KPO4 (10 mM), KH2PO4 (1.8 mM)], 

centrifuged at 4,000 x g for 15 min at 4°C, and the resulting supernatant was stored at -80°C for 

subsequent analysis. Hepatic concentrations of SAM and SAH were measured using competitive 

enzyme immunoassay kits appropriate for the detection and quantification of SAM and SAH in 

tissue lysates (Cell BioLabs; catalog no. STA-671-C).  

 

Serum homocysteine and cysteine. Serum total homocysteine and cysteine were measured by 

high-pressure liquid chromatography with post-column fluorescence detection, as previously 

described (29).  
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RNA Isolation and Quantitative Real-Time PCR. Total liver RNA was extracted using the 

Quickgene 810 Nucleic Acid Isolation System with a Quickgene RNA Tissue Kit (Autogen). Total 

RNA yield and purity was measured by spectrophotometry (Nanodrop 2000; Thermo Fisher 

Scientific). Single-stranded cDNA (1.8 µg/20 µL reaction) was synthesized using a High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems). Real-time PCR reactions were performed 

in quadruplicate using Forget-Me-Not" EvaGreen# detection reagents (Biotium) for the 

detection of Bhmt and Cbs with the LightCycler 96 Real-Time PCR System (Roche). The primer 

sets specific for Bhmt (forward primer: TCACTGCAGCGAAGAGAAAG, reverse primer: 

CGGTCCCTGAATGGTTCTATG) and Cbs (forward primer: 

CTTAGCAGTTCCTCCTCACATC, reverse primer: AGGTAGACATGACCACAGGTA) were 

normalized to Gapdh (forward primer: AGGTCGGTGTGAACGGATTTG, reverse primer: 

GGGGTCGTTGATGGCAACA). Amplification efficiencies of target and reference gene assays 

were verified using a dilution series of sample cDNA and efficiency was calculated from the slope 

of the regression line. Data were analyzed using the ΔΔCT method (CTsample – CTGapdh = ΔCT; 

ΔCTsample –ΔCTcontrol= ΔΔCT) (30).  

 

Western blot analysis. Liver samples (50 mg) were homogenized in 1 mL of 

radioimmunoprecipitation assay (RIPA) buffer [Tris-HCl (50mM, pH 7.4), NaCl (150 mM), 

sodium deoxycholate (0.5, w/v) NP-40 (1%, w/v), SDS (0.1%, w/v)] with protease inhibitors 

(Thermo Fisher Scientific). Samples were then centrifuged at 4,000 x g for 15 min at 4°C and the 

supernatant was collected. Protein concentrations were determined using a bicinchoninic acid 

assay (Pierce) according to the manufacturer’s instructions. Liver lysates were diluted to 3 µg/µL 

in loading buffer and a total of 45 µg protein was loaded onto a 4-20% SDS polyacrylamide gel 
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(Bio-Rad) for separation of proteins by electrophoresis. Following separation, proteins were 

transferred (100 min; 400 mA) to a nitrocellulose membrane. All membranes were stained with 

Ponceau S to verify equal loading and transfer. Membranes were washed with PBS and incubated 

with primary antibodies (BHMT, cat. no sc-69708; CBS, cat. no sc-133154; $ Tubulin, cat. no sc-

5286; Santa Cruz Biotechnology) overnight at 4°C. Following 3 washes with PBS, membranes 

were incubated with secondary antibody (IRDye 800CW Goat anti-Mouse, cat. no 925-32210) for 

1 h at room temperature. Membranes were washed 4 times in PBS prior to imaging via digital 

fluorescence detection using an Odyssey CLx imaging system (Li-Cor). Net intensity of each band 

was determined using Image Studio" 2.0 software and normalized to $ Tubulin.  

 

Enzyme Activity Assays. BHMT and CBS activities were measured by high-pressure liquid 

chromatography, as previously described (31).  

 

Statistical analysis. All data were analyzed with the use of SPSS Statistics Software Version 23 

(IBM). The assumption of homogeneity of variances was assessed by Levene’s test for equality of 

variances, normality was assessed by Shapiro-Wilk’s test and the data was checked for outliers 

using Grubb’s test. Mean values were evaluated for statistically significant differences (P < 0.05) 

with the use of a 2-factor ANOVA (experimental diet x folate status). An analysis of main effects 

was performed when the interaction effect of experimental diet and folate status was not 

statistically significant, followed by the Fisher’s Least Significant Difference post hoc test for 

pairwise comparisons. In cases of unequal variance where there was normality and equal sample 

size, a two-way ANOVA was run on the original data. In cases of unequal variance where 
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normality was violated, data was log transformed and test comparisons were run to verify that the 

original data and the transformed data yielded the same result. 

 

Results  

Cumulative body weight gain. Cumulative body weight gain and final body weight did not differ 

in rats fed the C, C+Cho or WE diets, regardless of folate status. Rats fed the FS-EP diet gained 

15% less weight than those fed the FR-EP diet (Table 6-2).  

 

Hepatic SAM and SAH. There was no effect of experimental diet or folate status on hepatic 

concentrations of SAM or SAH (Table 6-2). Likewise, no differences were observed in the ratio 

of hepatic SAM:SAH across any of the experimental dietary treatment groups (Table 6-2). 

 

Egg protein consumption prevented hyperhomocysteinemia in rats fed a folate-restricted diet. 

There was no statistically significant interaction between diet and folate status on serum 

homocysteine concentrations (P = 0.352). An analysis of main effects indicated a significant 

impact of folate status on circulating homocysteine concentrations. Serum homocysteine 

concentrations did not differ between any of the FS dietary treatment groups. As expected, 

circulating homocysteine concentrations were increased by 53% in rats fed the FR-C diet 

compared to rats fed the FS-C diet (Figure 6-2A). Likewise, rats fed the FR-C+Cho and the FR-

WE diets exhibited 42% and 38% higher serum homocysteine concentrations, respectively, 

compared to rats fed the FS-C diet. In contrast, circulating homocysteine concentrations did not 

differ between rats fed FR-EP and all FS dietary treatment groups (Figure 6-2A). 
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Circulating cysteine concentrations. There were no differences in circulating cysteine 

concentrations across any of the dietary treatment groups, regardless of folate status (Figure 6-2B).  

 

Hepatic CBS transcript abundance, protein abundance and enzyme activity. No differences were 

observed in hepatic Cbs mRNA, CBS abundance, or enzyme activity, regardless of experimental 

diet or folate status (Figure 6-3).  

 

Hepatic BHMT transcript and protein abundance. Quantitative real-time PCR analysis revealed 

no differences in hepatic Bhmt mRNA, regardless of experimental diet or folate status (Figure 

6-4A). Likewise, there was no effect of experimental diet or folate status on BHMT abundance 

(Figure 6-4B).  

 

Hepatic BHMT activity was upregulated by EP and WE diets. Main effects analysis indicated a 

significant effect of experimental diet on BHMT activity. The EP and WE diets resulted in a mean 

increase of 45% (P < 0.001) and 40% (P = 0.002), respectively, in BHMT activity compared to 

either C diet, regardless of folate status (Figure 6-4D). Pairwise comparisons showed a 36% and 

32% increase, respectively, in BHMT activity in rats fed FS-EP and FR-WE diets compared to rats 

fed FS-C. No differences were observed in BHMT activity between rats fed FS-EP, FR-EP, FS-

WE and FR-WE diets (Figure 6-4D) 

 

Discussion 

CVD is responsible for approximately 1 in 3 deaths in the United States and 

hyperhomocysteinemia is associated with increased CVD risk (32); thus, dietary strategies to 

maintain homocysteine balance may have implications for CVD prevention. The present study 
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demonstrates that dietary egg protein prevents elevated concentrations of circulating homocysteine 

in a folate-restricted rat model of hyperhomocysteinemia. The observed maintenance of 

homocysteine homeostasis with dietary egg protein may related to a compensatory increase in the 

hepatic activity of BHMT, as hepatic BHMT activity was higher in rats fed EP diets. This would 

suggest an increase in folate-independent remethylation of homocysteine to methionine. In vitro 

studies have demonstrated that BHMT and MS contribute equally to homocysteine remethylation 

in the liver (33). In these studies, MS impairment in vitro led to increased BHMT activity (33). In 

contrast to these findings, we did not observe altered BHMT abundance or activity in response to 

folate restriction. Rodent studies have shown that inhibition of BHMT activity results in 

hyperhomocysteinemia, demonstrating that BHMT is an important factor in maintaining normal 

circulating homocysteine concentrations (34,35). Therefore, it is not surprising that upregulation 

of BHMT activity by the EP diets would have a positive impact on circulating concentrations of 

homocysteine.  

BHMT is regulated by both dietary and hormonal factors. Numerous studies have reported 

that glucocorticoids and insulin play important roles in the regulation of BHMT expression and 

activity (36–39). There is also considerable evidence that BHMT regulation is altered by dietary 

factors, such as intake of sulfur amino acids, choline and betaine (31,40–44). In the present study, 

hepatic BHMT activity was upregulated by both EP and WE diets, whereas the C+Cho diet was 

without effect on BHMT activity. Several studies report elevated hepatic BHMT gene expression 

and activity in states of methionine deficiency and methionine excess (40,42,44,45). Excess dietary 

cysteine and cystine have also been shown to upregulate hepatic BHMT (40,46). Furthermore, 

variations in methionine and cysteine intake have been reported to regulate flux through 

homocysteine remethylation and transsfulfuration pathways in human subjects (24,25). It is 
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possible that the sulfur amino acid content of egg protein and whole egg may be responsible for 

the observed changes in hepatic BHMT, but this remains to be determined. Regardless, 

upregulation of BHMT activity by the WE diets did not result in improved homocysteine balance. 

The differential response in serum homocysteine concentrations between FR-EP and FR-WE may 

be due to other constituents of the egg yolk.  

Regulation of CBS includes transcriptional regulation by factors such as hormones and 

growth factors, redox regulation, and allosteric activation by SAM (47,48). The lack of effect on 

hepatic transcript level, protein abundance and activity of CBS across any of the experimental 

dietary treatment groups indicated that the prevention of hyperhomocysteinemia in rats fed the FR-

EP diet was not attributable to increased catabolism of homocysteine via the transsulfuration 

pathway. This finding is in agreement with the observation that circulating concentrations of 

cysteine, the initial product of the transsulfuration reaction, did not differ across any of the dietary 

treatment groups.  

The present study suggests that consumption of egg protein protects against increases in 

serum homocysteine in a folate-restricted model of hyperhomocysteinemia, owing in part to 

upregulated hepatic BHMT activity. Taken together, these data may support the inclusion of egg 

protein in dietary recommendations for maintenance of homocysteine balance in groups at-risk for 

elevated circulating homocysteine, such as lacto-ovo vegetarians, the elderly, and individuals with 

polymorphisms in the CBS and MTHFR enzymes. However, the relationship between dietary egg 

protein and homocysteine balance remains to be determined in a human population. Future dose-

response studies are needed to determine the minimal amount of egg protein required to maintain 

homocysteine balance.  
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Tables and Figures 

 

 

Figure 6-1: Folate, methyl group and homocysteine metabolism. BHMT, betaine homocysteine S-
methyltransferase; CBS, cystathionine !-synthase; DMG, dimethylglycine; MAT, methionine 
adenosyltransferase; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; 
SAH, S-adenosylhomocysteine; SAHH, S-adenosylhomocysteine hydrolase; SAM, S-
adenosylmethionine; THF, tetrahydrofolate; 5-CH3-THF, 5-methyltetrahydrofolate, X, methyl 
group acceptor.  
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A       B 

 

Figure 6-2: Circulating homocysteine (A) and cysteine (B) concentrations of FS and FR rats fed a 
C, C+Cho, EP or WE diet for 8 wk. Data are means ± SEMs; n=6. Bars without a common letter 
differ (P < 0.05). FS, folate sufficient; FR, folate restricted, C, casein-based diet; C+Cho, casein-
based diet supplemented with choline; EP, egg protein-based diet; WE, whole egg-based diet.  
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A      B 

 

C      D 

 

Figure 6-3: Hepatic Cbs mRNA (A), hepatic CBS protein abundance (B), representative western 
blots of CBS and $ Tubulin (C), and enzyme activity (D) of FS and FR rats fed a C, C+Cho, EP 
or WE diet for 8 wk. Cbs mRNA and CBS abundance are expressed relative to rats fed the FS-C 
diet. Data are means ± SEMs; n=6. Bars without a common letter differ (P < 0.05). FS, folate 
sufficient; FR, folate restricted, C, casein-based diet; C+Cho, casein-based diet supplemented with 
choline; EP, egg protein-based diet; WE, whole egg-based diet.  
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A      B 

 

C      D 

 

Figure 6-4: Hepatic Bhmt mRNA (A), hepatic BHMT protein abundance (B), representative 
western blots of BHMT and $ Tubulin (C), and enzyme activity (D) of FS and FR rats fed a C, 
C+Cho, EP or WE diet for 8 wk. Bhmt mRNA and BHMT abundance are expressed relative to rats 
fed the FS-C diet. Data are means ± SEMs; n=6. Bars without a common letter differ (P < 0.05). 
FS, folate sufficient; FR, folate restricted, C, casein-based diet; C+Cho, casein-based diet 
supplemented with choline; EP, egg protein-based diet; WE, whole egg-based diet. 
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Diet x Folate Status: P = 0.073
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Table 6-1: Composition of FS and FR C, C+Cho, EP or WE diets fed to Sprague Dawley rats for 8 wk.3 

1All ingredients were purchased from Envigo with the exception of dried whole egg (Rose Acre Farms), as well as L-methionine and 
choline bitartrate (Sigma-Aldrich).  

2Total protein and lipid content provided by 413 g of dried whole egg were 48.4 (200 g) and 42.9% (177 g), respectively.  

3 FS, folate sufficient; FR, folate restricted, C, casein-based diet; C+Cho, casein-based diet supplemented with choline; EP, egg protein-
based diet; WE, whole egg-based diet. 

! !

Ingredient1 
 

FS-C 
 

FS-C+Cho 
 

FS-EP 
 

FS-WE 
 

FR-C 
 

FR-C+Cho 
 

FR-EP 
 

FR-WE 
 g/kg 

Casein 200 200 0 0 200 200 0 0 
Dried whole egg2 0 0 0 413 0 0 0 413 
Egg white solids 0 0 200 0 0 0 200 0 

Cornstarch 423 412 423 387 423 412 423 387 
Glucose monohydrate 150 150 150 150 150 150 150 150 

Corn oil 177 177 177 0 177 177 177 0 
Mineral mix (AIN93) 35 35 35 35 35 35 35 35 
Vitamin mix (AIN93) 10 10 10 10 0 0 0 0 

FR Vitamin mix 0 0 0 0 10 10 10 10 
Biotin 0 0 0.4 0.4 0 0 0.4 0.4 

Choline bitartrate 2 13 2 2 2 13 2 2 
L-Methionine 3 3 3 3 3 3 3 3 
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Table 6-2: Body weight parameters and hepatic concentrations of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in 
Sprague Dawley rats fed a C, C+Cho, EP or WE diet and their respective FR diets for 8 wk.2   

Parameter 
 

FS-C 
 

FS-C+Cho 
 

FS-EP 
 

FS-WE 
 

FR-C 
 
FR-C+Cho 

 
FR-EP 

 
FR-WE 

P-value 
Diet 

P-value  
Folate 
Status 

P-value 
 Diet x 
Folate 
Status 

            
Initial Body Weight 

(g) 166±10 167±8 169±8 171±4 176±4 174±3 161±9 174±2 0.676 0.489 0.560 

Final Body Weight 
(g) 379±9a 385±13a 339±11b 373±9a 383±17a 379±5a 361±8ab 376±7a 0.013 0.456 0.582 

Cumulative Weight 
Gain (g) 213±4a 218±13a 170±8b 202±7a 207±14a 205±4a 200±10a 202±6a 0.022 0.724 0.095 

Hepatic SAM 
(nmol/g) 43.5±7.0 50.0±10.5 38.3±14.6 41.1±9.3 54.7±9.2 39.0±11.8 35.3±8.0 59.6±12.8 0.58 0.614 0.573 

Hepatic SAH 
(nmol/g) 70.5±4.7 62.3±9.9 69.0±9.1 65.8±12.6 59.7±7.8 41.7±5.7 75.7±9.1 63.8±9.2 0.155 0.290 0.458 

SAM:SAH Ratio 0.6±0.1 1.0±0.3 0.8±0.5 0.9±0.3 1.0±0.2 1.1±0.4 0.5±0.1 1.0±0.2 0.584 0.706 0.688 
            

 

1Values are means ± SEMs; n=6. Mean values within a row without a common letter are statistically significant (P < 0.05). 2 FS, folate 
sufficient; FR, folate restricted, C, casein-based diet; C+Cho, casein-based diet supplemented with choline; EP, egg protein-based diet; 
WE, whole egg-based diet.  
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CHAPTER 7.   !GENERAL CONCLUSIONS 

Overall Summary and Conclusions 

Metabolic diseases such as obesity, type 2 diabetes (T2D) and cardiovascular disease 

are characterized by alterations in nutrient metabolism. It is recognized that an individuals’ 

dietary patterns can assist in preventing or delaying the onset of metabolic disease or, in 

contrast, can directly contribute to disease development and progression. Whole eggs are a 

nutrient-dense food, providing high-quality protein and an array of vitamins and minerals, and 

can play both nutritional and functional roles in the diet (1,2). Potential benefits of egg 

consumption during the progression of metabolic disease include body weight management 

and the maintenance of micronutrient balance, including vitamin D and methyl groups (2–4). 

However, there remains controversy surrounding the potential adverse effects of egg 

consumption, such as impaired blood glucose regulation and cardiovascular disease risk, in 

individuals with metabolic disease (5–9). The studies presented in this dissertation, utilizing 

rat models of metabolic disease, demonstrate that egg consumption may contribute to the 

maintenance of body weight and micronutrient balance, but may also impair insulin sensitivity.  

The first two studies described in this dissertation examined whole egg as a naturally 

occurring dietary source of the micronutrient vitamin D.  Suboptimal vitamin D status is highly 

prevalent in individuals with T2D (10–12), and is exacerbated by the presence of diabetic 

nephropathy owing to urinary loss of vitamin D (13,14). Results from the studies described in 

this dissertation demonstrate that the consumption of whole eggs was effective at maintaining 

vitamin D status in T2D rats. Notably, a diet containing 20% (w/w) protein from whole egg 

maintained vitamin D balance more effectively than a diet containing an equivalent amount of 

supplemental cholecalciferol. However, consumption of lower doses of whole egg, at 10, 5 and 
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2.5% protein from whole egg, translating to approximately 7, 3.5 and 1.75 eggs/day in humans, 

did not prevent vitamin D insufficiency in T2D rats. These data suggest that consumption of 

1-2 eggs/day, without additional measures to improve vitamin D status, may not be an effective 

means to prevent insufficiency in individuals with T2D. However, accumulating evidence 

suggests that vitamin D-fortified eggs may be protective against declining concentrations of 

circulating 25(OH)D (15–17). Thus, studies evaluating the effect of fortified egg consumption 

on vitamin D homeostasis in T2D are warranted.   

An interesting outcome of the vitamin D studies was a significant reduction in weight 

gain in obese, T2D rats fed a diet containing 20% protein from whole egg. This attenuation of 

weight gain was, in part, due to a reduction in body fat percentage. Furthermore, a dose-

dependent attenuation of weight gain was observed in T2D rats fed diets containing 20, 10, 5 

and 2.5% protein from whole egg. Despite reduced weight gain in T2D rats fed varying 

concentrations of dietary whole egg, we did not observe a corresponding reduction in food 

intake, indicating that the observed reduction in weight gain was not related to measures of 

satiety.   

Obesity and excessive weight gain are major risk factors in the development of insulin 

resistance and T2D (18–21); thus, we investigated whether the attenuation of weight gain in 

T2D rats consuming a diet containing 20% protein from whole egg was related to measures of 

insulin sensitivity and skeletal muscle insulin signaling. Insulin sensitivity was impaired in 

T2D rats fed a whole egg-based diet; however, no differences in skeletal muscle insulin 

signaling were observed between T2D rats fed casein- and whole egg-based diets. In addition, 

fasting serum glucose was increased, whereas fasting serum insulin and the homeostatic model 

assessment of !-cell function were decreased in T2D rats fed a whole egg-based diet. 
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The final study described in this dissertation focused on other components of whole 

egg that may modulate the metabolic disorder hyperhomocysteinemia, which is associated with 

cardiovascular disease risk. Eggs contain choline, B vitamins and sulfur amino acids, nutrients 

which play important roles in the regulation of methyl group metabolism. Our results indicate 

that dietary egg protein may help prevent elevations in circulating homocysteine in a rodent 

model of hyperhomocysteinemia, due to upregulation of hepatic betaine-homocysteine S-

methyltransferase activity, an enzyme important in the maintenance of homocysteine balance.    

The findings from these studies suggest that inclusion of whole eggs in the diet may 

assist in body weight maintenance in individuals at risk for the development of obesity and 

T2D. Future studies will aim to elucidate the mechanism underlying the observed reduction in 

weight gain. Additionally, whole eggs are an important source of nutrients, such as B vitamins, 

choline and vitamin D, and, in combination with a healthy eating pattern, may contribute to 

vitamin D and homocysteine balance in individuals with metabolic disease. However, egg 

consumption may impair insulin sensitivity and blood glucose regulation in individuals with 

pre-existing T2D, though future studies are warranted to determine the impact of lower 

concentrations of dietary whole egg on metabolic biomarkers of insulin sensitivity.  
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